【題目】為普及高中生安全逃生知識(shí)與安全防護(hù)能力,某學(xué)校高一年級(jí)舉辦了高中生安全知識(shí)與安全逃生能力競(jìng)賽.該競(jìng)賽分為預(yù)賽和決賽兩個(gè)階段,預(yù)賽為筆試,決賽為技能比賽.先將所有參賽選手參加筆試的成績(jī)(得分均為整數(shù),滿分為100分)進(jìn)行統(tǒng)計(jì),制成如下頻率分布表.
分?jǐn)?shù)(分?jǐn)?shù)段) | 頻數(shù)(人數(shù)) | 頻率 |
[60,70) | 9 | x |
[70,80) | y | 0.38 |
[80,90) | 16 | 0.32 |
[90,100) | z | s |
合計(jì) | p | 1 |
(Ⅰ)求出上表中的x,y,z,s,p的值;
(Ⅱ)按規(guī)定,預(yù)賽成績(jī)不低于90分的選手參加決賽,參加決賽的選手按照抽簽方式?jīng)Q定出場(chǎng)順序.已知高一二班有甲、乙兩名同學(xué)取得決賽資格.
①求決賽出場(chǎng)的順序中,甲不在第一位、乙不在最后一位的概率;
②記高一二班在決賽中進(jìn)入前三名的人數(shù)為X,求X的分布列和數(shù)學(xué)期望.
【答案】解:(Ⅰ)由題意知,由[80,90)上的數(shù)據(jù), 根據(jù)樣本容量,頻率和頻數(shù)之間的關(guān)系得到n= =50,
∴x= =0.18,
y=19,z=6,s=0.12,p=50
(Ⅱ)由(Ⅰ)知,參加決賽的選手共6人,
①設(shè)“甲不在第一位、乙不在第六位”為事件A,
則
所以甲不在第一位、乙不在第六位的概率為
②隨機(jī)變量X的可能取值為0,1,2
,
,
,
隨機(jī)變量X的分布列為:
X | 0 | 1 | 2 |
P |
因?yàn)? ,
所以隨機(jī)變量X的數(shù)學(xué)期望為1
【解析】(I)根據(jù)樣本容量,頻率和頻數(shù)之間的關(guān)系得到要求的幾個(gè)數(shù)據(jù),注意[80,90)小組數(shù)據(jù)得出樣本容量,從而進(jìn)一步得出表中的x,y,z,s,p的值.(II)①設(shè)“甲不在第一位、乙不在第六位”為事件A,根據(jù)相互獨(dú)立事件的概率公式得到結(jié)果.②隨機(jī)變量X的可能取值為0,1,2,結(jié)合變量對(duì)應(yīng)的概率,寫出分布列和期望.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用頻率分布表和離散型隨機(jī)變量及其分布列的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握第一步,求極差;第二步,決定組距與組數(shù);第三步,確定分點(diǎn),將數(shù)據(jù)分組;第四步,列頻率分布表;在射擊、產(chǎn)品檢驗(yàn)等例子中,對(duì)于隨機(jī)變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機(jī)變量叫做離散型隨機(jī)變量.離散型隨機(jī)變量的分布列:一般的,設(shè)離散型隨機(jī)變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個(gè)值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機(jī)變量X 的概率分布,簡(jiǎn)稱分布列.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(Ⅰ)若,求曲線在點(diǎn)處的切線方程;
(Ⅱ)若在上恒成立,求實(shí)數(shù)的取值范圍;
(Ⅲ)若數(shù)列的前項(xiàng)和, ,求證:數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,角A,B,C所對(duì)應(yīng)的邊分別為a,b,c,且(2a﹣c)cosB=bcosC. (Ⅰ)求角B的大;
(Ⅱ)若a=2,c=3,求sinC的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若執(zhí)行如圖的程序框圖,輸出S的值為4,則判斷框中應(yīng)填入的條件是( )
A.k<14?
B.k<15?
C.k<16?
D.k<17?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等差數(shù)列{an}中,a3=9,a5=17,記數(shù)列 的前n項(xiàng)和為Sn , 若 ,對(duì)任意的n∈N*成立,則整數(shù)m的最小值為( )
A.5
B.4
C.3
D.2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=x2+aln(x+1)(a為常數(shù))
(Ⅰ)若函數(shù)y=f(x)在區(qū)間[1,+∞)上是單調(diào)遞增函數(shù),求實(shí)數(shù)a的取值范圍;
(Ⅱ)若函數(shù)y=f(x)有兩個(gè)極值點(diǎn)x1 , x2 , 且x1<x2 , 求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)將函數(shù)f(x)的圖象向右平移個(gè)單位,再將所得圖象的橫坐標(biāo)縮短到原來(lái)的一半,縱坐標(biāo)不變,得到新的函數(shù)y=g(x),當(dāng)時(shí),求g(x)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在矩形ABCD中,AB=1,AD=2,動(dòng)點(diǎn)P在以點(diǎn)C為圓心且與BD相切的圓上.若= + ,則+的最大值為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校高三年級(jí)有學(xué)生500人,其中男生300人,女生200人,為了研究學(xué)生的數(shù)學(xué)成績(jī)是否與性別有關(guān),現(xiàn)采用分層抽樣的方法,從中抽取了100名學(xué)生,先統(tǒng)計(jì)了他們期中考試的數(shù)學(xué)分?jǐn)?shù),然后按性別分為男、女兩組,再將兩組學(xué)生的分?jǐn)?shù)分成5組:[100,110),[110,120),[120,130),[130,140),[140,150]分別加以統(tǒng)計(jì),得到如圖所示的頻率分布直方圖.
(1)從樣本中分?jǐn)?shù)小于110分的學(xué)生中隨機(jī)抽取2人,求兩人恰好為一男一女的概率;
(2)若規(guī)定分?jǐn)?shù)不小于130分的學(xué)生為“數(shù)學(xué)尖子生”,請(qǐng)你根據(jù)已知條件完成2×2列聯(lián)表,并判斷是否有90%的把握認(rèn)為“數(shù)學(xué)尖子生與性別有關(guān)”?
P(K2≥k0) | 0.100 | 0.050 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 6.635 | 10.828 |
附:K2= .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com