18、已知集合A={x|x2-4x-5≤0},B={x|x2-2x-m<0}.
(1)當(dāng)m=3時(shí),求A∩?RB;
(2)若A∩B={x|-1≤x<4},求實(shí)數(shù)m的值.
分析:(1)求出集合A中一元二次不等式的解集即可確定出集合A,把m=3代入集合B中的不等式中,求出不等式的解集即可確定出集合B,然后先根據(jù)全集為R求出集合B的補(bǔ)集,最后求出集合A與集合B補(bǔ)集的交集即可;
(2)由A與B的交集和(1)中解出的集合A的解集可知,4是集合B中不等式左邊等于0方程的解,把4代入方程中即可得到關(guān)于m的方程,求出方程的解即可得到實(shí)數(shù)m的值.
解答:解:(1)A={x|x2-4x-5≤0}={x|-1≤x≤5},
當(dāng)m=3時(shí),B={x|-1<x<3},
則?RB={x|x≤-1或x≥3},
∴A∩?RB={x|x=-1或3≤x≤5}.
(2)∵A∩B={x|-1≤x<4},
∴x=4是方程x2-2x-m=0的一個(gè)根,
∴有42-2×4-m=0,解得m=8,
此時(shí)B={x|-2<x<4}符合題意.
點(diǎn)評(píng):此題考查了一元二次不等式的解法,考查了補(bǔ)集及交集的求法,要求學(xué)生掌握交集的定義,是一道綜合題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

3、已知集合A={x|x>1},集合B={x|x-4≤0},則A∪B等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x<1},B={x|x(x-2)≤0},則A∩B=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x<-2或3<x≤4},B={x||x-1|≤4}
求:
(1)CRA;
(2)A∪B;
(3)若C={x|x>a},且B∩C=B,求a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x≥1},B={x|x>2},則(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•德陽(yáng)三模)已知集合A={x|
x-2
x+1
≤0},B={y|y=cosx,x∈R}
.則A∩B為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案