已知命題p:方程x2+ky2=2表示焦點在y軸上的橢圓;命題q:?x∈(0,+∞),k>x+
1
x
.如果命題“p∨q”為真,命題“p∧q”為假,求k的取值范圍.
考點:復合命題的真假
專題:簡易邏輯
分析:先化簡命題p和q,命題“p∨q”為真,命題“p∧q”為假得p,q中一真一假,列出不等式組,解出實數(shù)a的取值范圍.
解答: 解:命題p:方程x2+ky2=2表示焦點在y軸上的橢圓,化為標準形式為
x2
2
+
y2
2
k
=1,則
2
k
>2,解得0<k<1;
命題q:?x∈(0,+∞),k>x+
1
x
≥2,則k>2;
如果命題“p∨q”為真,命題“p∧q”為假,則p,q一真一假,
若p真q假,則
0<k<1
k≤2
,則0<k<1,
若p假q真,則
k≤0,或k≥1
k>2
,則k≤0或1≤k<2,
則k的取值范圍是k<2.
點評:本題主要考查復合命題的真假,橢圓的標準方程以及恒成立問題的轉化,注意a<f(x)恒成立等價于a<f(x)的最小值,屬于綜合題,考查推理和解不等式的能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

命題“?x∈R,x2+2x+2≤0”的否定是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,若A:B:C=1:2:3,則a:b:c=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左焦點為A,上頂點為B,左焦點為F,且∠AFB=150°,△AFB=150°,△AFB的面積為1-
3
2
,求此橢圓方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知E、F分別是正方體ABCD-A1B1C1D1的棱AA1、BB1的中點,求EF與面ACC1A1所成的角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若實數(shù)x,y滿足條件
x≤2
y≤2
x+y≥2
,則目標函數(shù)z=x+2y的最小值是( 。
A、-2B、2C、4D、6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓錐曲線E:
(x-c)2+y2
+
(x+c)2+y2
=c2+1(c>0,c≠1)的離心率為e=
3
2
,過原點O的直線與曲線E交于P、A兩點,其中P在第一象限,B是曲線E上不同于P、A的點,直線PB、AB的斜率分別為k1、k2,且k1k2≠0.
(Ⅰ)求圓錐曲線E的標準方程;
(Ⅱ)求k1•k2的值;
(Ⅲ)已知F為圓錐曲線E的右焦點,若PA⊥PB,且存在λ∈R使
AF
BF
,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知單位圓上一點P(-
3
2
,y),設以OP為終邊的角為θ(0<θ<2π),求θ的正弦值、余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓C1:x2+(y-2)2=1,點Q(0,-1),動點M到圓C1的切線長與MQ的絕對值的比值為λ(λ>0).
(1)當λ=1和λ=
10
時,求出點M的軌跡方程;
(2)記λ=
10
時的點M的軌跡為曲線C2.若直線l1,l2的斜率均存在且垂直相交于點P,當l1,l2與曲線C1,C2相交,且恒有l(wèi)1和l2被曲線C2截得的弦長相等,試求出所有滿足條件的點P的坐標.

查看答案和解析>>

同步練習冊答案