過雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左焦點(diǎn)F(-c,0)作圓x2+y2=a2的切線,切點(diǎn)E,延長FE交雙曲線于點(diǎn)P,O為原點(diǎn),若
OE
=
1
2
OF
+
OP
),則雙曲線的離心率為
 
考點(diǎn):雙曲線的簡單性質(zhì)
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:由題設(shè)知|EF|=b,|PF|=2b,|PF'|=2a,再由|PF|-|PF'|=2a,知b=2a,由此能求出雙曲線的離心率.
解答: 解:∵|OF|=c,|OE|=a,OE⊥EF,
∴|EF|=b,
OE
=
1
2
OF
+
OP
),∴|PF|=2b,|PF'|=2a,
∵|PF|-|PF'|=2a,∴b=2a,
∴e=
1+(
b
a
)2
=
5

故答案為:
5
點(diǎn)評:本題主要考查雙曲線的標(biāo)準(zhǔn)方程,以及雙曲線的簡單性質(zhì)的應(yīng)用,考查拋物線的定義,考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的公差不為0,a1=1且a1,a3,a9成等比數(shù)列.
(1)求通項(xiàng)公式an
(2)設(shè)bn=2 an,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

中心在原點(diǎn),焦點(diǎn)在x軸上的雙曲線的一條漸近線過點(diǎn)(4,-2),則它的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l過雙曲線C:3x2-y2=9的右頂點(diǎn),且與雙曲線C的一條漸近線平行.若拋物線x2=2py(p>0)的焦點(diǎn)恰好在直線l上,則p=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓的方程為x2+y2-2x-2y+1=0,若直線x+y+a=0與圓有交點(diǎn),則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(
x+1
x
)=x4+
1
x4
,x∈R,則函數(shù)f(x)的遞減區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

F1、F2為橢圓的兩個(gè)焦點(diǎn),過F2的直線交橢圓于A、B兩點(diǎn),AF1⊥AB,且|AF1|=|AB|,則橢圓的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理)已知函數(shù)f(x)的定義域?yàn)閧1,2,3},值域?yàn)榧蟵1,2,3,4}的非空真子集,設(shè)點(diǎn)A(1,f(1)),B(2,f(2)),C(3,f(3)),△ABC的外接圓圓心為M,且
MA
+
MC
MB
(λ∈R),滿足條件的函數(shù)f(x)有
 
個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的離心率是2,焦點(diǎn)坐標(biāo)是(0,-4)(0,4)則雙曲線的方程為( 。
A、
x2
4
-
y2
12
=1
B、
y2
4
-
x2
12
=1
C、
x2
10
-
y2
6
=1
D、
y2
6
-
x2
10
=1

查看答案和解析>>

同步練習(xí)冊答案