【題目】已知當(dāng)x∈[0,1]時(shí),函數(shù)y=(mx﹣1)2 的圖象與y= +m的圖象有且只有一個(gè)交點(diǎn),則正實(shí)數(shù)m的取值范圍是( 。
A.(0,1]∪[2 ,+∞)
B.(0,1]∪[3,+∞)
C.(0, )∪[2 ,+∞)
D.(0, ]∪[3,+∞)
【答案】B
【解析】解:根據(jù)題意,由于m為正數(shù),y=(mx﹣1)2 為二次函數(shù),在區(qū)間(0, )為減函數(shù),( ,+∞)為增函數(shù),
函數(shù)y= +m為增函數(shù),
分2種情況討論:
①、當(dāng)0<m≤1時(shí),有 ≥1,
在區(qū)間[0,1]上,y=(mx﹣1)2 為減函數(shù),且其值域?yàn)閇(m﹣1)2 , 1],
函數(shù)y= +m為增函數(shù),其值域?yàn)閇m,1+m],
此時(shí)兩個(gè)函數(shù)的圖象有1個(gè)交點(diǎn),符合題意;
②、當(dāng)m>1時(shí),有 <1,
y=(mx﹣1)2 在區(qū)間(0, )為減函數(shù),( ,1)為增函數(shù),
函數(shù)y= +m為增函數(shù),其值域?yàn)閇m,1+m],
若兩個(gè)函數(shù)的圖象有1個(gè)交點(diǎn),則有(m﹣1)2≥1+m,
解可得m≤0或m≥3,
又由m為正數(shù),則m≥3;
綜合可得:m的取值范圍是(0,1]∪[3,+∞);
故選:B.
【考點(diǎn)精析】關(guān)于本題考查的函數(shù)的值域和函數(shù)單調(diào)性的性質(zhì),需要了解求函數(shù)值域的方法和求函數(shù)最值的常用方法基本上是相同的.事實(shí)上,如果在函數(shù)的值域中存在一個(gè)最。ù螅⿺(shù),這個(gè)數(shù)就是函數(shù)的最。ù螅┲担虼饲蠛瘮(shù)的最值與值域,其實(shí)質(zhì)是相同的;函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間 ,不能把單調(diào)性相同的區(qū)間和在一起寫成其并集才能得出正確答案.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與拋物線相切于點(diǎn).
(1)求實(shí)數(shù)的值;
(2)求以點(diǎn)為圓心,且與拋物線的準(zhǔn)線相切的圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了讓觀賞游玩更便捷舒適,常州恐龍園推出了代步工具租用服務(wù).已知有腳踏自行車與電動自行車兩種車型,采用分段計(jì)費(fèi)的方式租用.型車每分鐘收費(fèi)元(不足分鐘的部分按分鐘計(jì)算),型車每分鐘收費(fèi)元(不足分鐘的部分按分鐘計(jì)算),現(xiàn)有甲乙丙丁四人,分別相互獨(dú)立地到租車點(diǎn)租車騎行(各租一車一次),設(shè)甲乙丙丁不超過分鐘還車的概率分別為,并且四個(gè)人每人租車都不會超過分鐘,甲乙丙均租用型車,丁租用型車.
(1)求甲乙丙丁四人所付的費(fèi)用之和為25元的概率;
(2)求甲乙丙三人所付的費(fèi)用之和等于丁所付的費(fèi)用的概率;
(3)設(shè)甲乙丙丁四人所付費(fèi)用之和為隨機(jī)變量,求的概率分布和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】假設(shè)關(guān)于某設(shè)備使用年限x(年)和所支出的維修費(fèi)用y(萬元)有如下統(tǒng)計(jì)資料:
i | 1 | 2 | 3 | 4 | 5 | =90,=112.3 |
xi | 2 | 3 | 4 | 5 | 6 | |
yi | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 | |
xi yi | 4.4 | 11.4 | 22.0 | 32.5 | 42.0 |
若由資料知,y對x呈線性相關(guān)關(guān)系,試求:
(1)回歸直線方程;
(2)估計(jì)使用年限為10年時(shí),維修費(fèi)用約是多少
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若一條直線a與平面α內(nèi)的一條直線b所成的角為30°,則下列說法正確的是( )
A. 直線a與平面α所成的角為30° B. 直線a與平面α所成的角大于30°
C. 直線a與平面α所成的角小于30° D. 直線a與平面α所成的角不超過30°
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以下關(guān)于線性回歸的判斷,正確的個(gè)數(shù)是( )
①若散點(diǎn)圖中所有點(diǎn)都在一條直線附近,則這條直線為回歸直線;
②散點(diǎn)圖中的絕大多數(shù)都線性相關(guān),個(gè)別特殊點(diǎn)不影響線性回歸,如圖中的A,B,C點(diǎn);
③已知直線方程為=0.50x-0.81,則x=25時(shí),y的估計(jì)值為11.69;
④回歸直線方程的意義是它反映了樣本整體的變化趨勢.
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校從參加高三模擬考試的學(xué)生中隨機(jī)抽取60名學(xué)生,將其數(shù)學(xué)成績(均為整數(shù))分成六組[90,100),[100,110),…,[140,150]后得到如下部分頻率分布直方圖,觀察圖形的信息,回答下列問題:
(1)求分?jǐn)?shù)在[120,130)內(nèi)的頻率;
(2)若在同一組數(shù)據(jù)中,將該組區(qū)間的中點(diǎn)值(如:組區(qū)間[100,110)的中點(diǎn)值為=105)作為這組數(shù)據(jù)的平均分,據(jù)此,估計(jì)本次考試的平均分;
(3)用分層抽樣的方法在分?jǐn)?shù)段為[110,130)的學(xué)生中抽取一個(gè)容量為6的樣本,將該樣本看成一個(gè)總體,從中任取2人,求至多有1人在分?jǐn)?shù)段[120,130)內(nèi)的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com