(本小題滿分12分)
在如圖所示的四棱錐中,已知 PA⊥平面ABCD, , ,,
為的中點.
(1)求證:MC∥平面PAD;
(2)求直線MC與平面PAC所成角的余弦值;
(3)求二面角的平面角的正切值.
(1)根據(jù)中位線性質(zhì),得到EM//AB,且EM= AB. 又因為,且,所以EM//DC,且EM=DC ∴四邊形DCME為平行四邊形, 則MC∥DE,
(2)(3)
解析試題分析:(1 )如圖,取PA的中點E,連接ME,DE,∵M為PB的中點,
∴EM//AB,且EM= AB. 又∵,且,
∴EM//DC,且EM=DC ∴四邊形DCME為平行四邊形,
則MC∥DE,又平面PAD, 平面PAD
所以MC∥平面PAD
(2)取PC中點N,則MN∥BC,∵PA⊥平面ABCD,∴PA⊥BC ,
又,∴BC⊥平面PAC,
則MN⊥平面PAC所以,為直線MC與平面PAC所成角,
(3)取AB的中點H,連接CH,則由題意得
又PA⊥平面ABCD,所以,則平面PAB.
所以,過H作于G,連接CG,則平面CGH,所以
則為二面角的平面角.
則,
故二面角的平面角的正切值為
考點:本試題考查了線面角和二面角的求解運用。
點評:解決該試題的關(guān)鍵是能利用線面角和二面角的定義,準(zhǔn)確的表示角,借助于三角形的知識來求解得到,也可以建立空間直角坐標(biāo)系來運用空間向量法來得到求解,屬于中檔題。
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
如圖,在三棱錐中,,,,,, 點,分別在棱上,且,
(Ⅰ)求證:平面PAC
(Ⅱ)當(dāng)為的中點時,求與平面所成的角的正弦值;
(Ⅲ)是否存在點使得二面角為直二面角?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)
如圖,四邊形ABCD為正方形,PD⊥平面ABCD,PD∥QA,QA=AB=PD.
(1)證明:平面PQC⊥平面DCQ;
(2)求二面角Q-BP-C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分13分)
如圖1,在等腰梯形中,,,,為上一點, ,且.將梯形沿折成直二面角,如圖2所示.
(Ⅰ)求證:平面平面;
(Ⅱ)設(shè)點關(guān)于點的對稱點為,點在所在平面內(nèi),且直線與平面所成的角為,試求出點到點的最短距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分14分)
如圖,已知平面QBC與直線PA均垂直于所在平面,且PA=AB=AC.
(Ⅰ)求證:PA∥平面QBC;
(Ⅱ)若,求二面角Q-PB-A的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題12分)在直三棱柱(側(cè)棱垂直底面)中,,.
(Ⅰ)若異面直線與所成的角為,求棱柱的高;
(Ⅱ)設(shè)是的中點,與平面所成的角為,當(dāng)棱柱的高變化時,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
如圖,平面⊥平面,是直角三角形,,四邊形是直角梯形,其中,,,且,是的中點,分別是的中點.
(Ⅰ)求證:平面;
(Ⅱ)求二面角的正切值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com