14.已知正數(shù)x,y滿(mǎn)足x+8y=xy,則x+2y的最小值為18.

分析 將x+8y=xy,轉(zhuǎn)化為$\frac{1}{y}$+$\frac{8}{x}$=1,再由x+2y=(x+y)($\frac{1}{y}$+$\frac{8}{x}$)展開(kāi)后利用基本不等式可求出x+2y的最小值.

解答 解:∵正數(shù)x,y滿(mǎn)足x+8y=xy,
∴$\frac{1}{y}$+$\frac{8}{x}$=1,
則x+2y=(x+2y)($\frac{1}{y}$+$\frac{8}{x}$)=$\frac{x}{y}$+$\frac{16y}{x}$+10≥2$\sqrt{\frac{x}{y}•\frac{16y}{x}}$+10=18,
當(dāng)且僅當(dāng)$\frac{x}{y}$=$\frac{16y}{x}$時(shí)”=“成立,
故答案為:18.

點(diǎn)評(píng) 本題考查基本不等式,應(yīng)注意等號(hào)成立的條件;“1”的替換是一個(gè)常用的技巧,應(yīng)學(xué)會(huì)靈活運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.y=log${\;}_{\frac{1}{2}}$(-x2-2x+3)的單調(diào)遞增區(qū)間[-1,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.空間三個(gè)平面能把空間分成的部分為(  )
A.6或4B.7或8C.5或6或7D.4或6或7或8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.若x,y滿(mǎn)足約束條件$\left\{\begin{array}{l}{x-y+1≥0}\\{x-2y≤0}\\{x+2y-2≤0}\end{array}\right.$由約束條件圍成的圖形的面積$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知函數(shù)f(x)=x2+bx的圖象過(guò)點(diǎn)(1,2),記an=$\frac{1}{f(n)}$.若數(shù)列{an}的前n項(xiàng)和為Sn,則Sn等于( 。
A.$\frac{1}{n}$B.$\frac{1}{n+1}$C.$\frac{n-1}{n}$D.$\frac{n}{n+1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知數(shù)列{an}是等差數(shù)列,且a2=-14,a5=-5.
(1)求數(shù)列{an}的通項(xiàng)an;
(2)求{an}前n項(xiàng)和Sn的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知數(shù)列{an}是公比為q的等比數(shù)列,且a1+2a2=3a3
(1)求q的值;
(2)設(shè)數(shù)列{bn}是首項(xiàng)為2,公差為q的等差數(shù)列,{bn}的前n項(xiàng)和為T(mén)n.當(dāng)n≥2時(shí),試比較bn與Tn的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.如圖,在空間四邊形ABCD(A,B,C,D不共面)中,一個(gè)平面與邊AB,BC,CD,DA分別交于E,F(xiàn),G,H(不含端點(diǎn)),則下列結(jié)論錯(cuò)誤的是( 。
A.若AE:BE=CF:BF,則AC∥平面EFGH
B.若E,F(xiàn),G,H分別為各邊中點(diǎn),則四邊形EFGH為平行四邊形
C.若E,F(xiàn),G,H分別為各邊中點(diǎn)且AC=BD,則四邊形EFGH為矩形
D.若E,F(xiàn),G,H分別為各邊中點(diǎn)且AC⊥BD,則四邊形EFGH為矩形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=x2+ax-lnx(a∈R).
(Ⅰ)當(dāng)a=1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)令g(x)=f(x)-x2,是否存在實(shí)數(shù)a,當(dāng)x∈(0,e]時(shí),函數(shù)g(x)的最小值是3,若存在,求a的值;若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案