【題目】12分)

如圖,四棱錐P-ABCD中,側(cè)面PAD為等比三角形且垂直于底面ABCD, EPD的中點(diǎn).

1)證明:直線 平面PAB

2)點(diǎn)M在棱PC 上,且直線BM與底面ABCD所成銳角為 ,求二面角M-AB-D的余弦值

【答案】

1詳見解析

2

【解析】(1)取中點(diǎn),連接、

、分別為、中點(diǎn)

,又

,四邊形為平行四邊形

平面

(2)取中點(diǎn),連,由于為正三角形

平面平面,平面平面

平面,連,四邊形為正方形。

平面,平面平面

而平面平面

,垂足為,平面

與平面所成角,

中,,

設(shè),

,

中,,

,

為坐標(biāo)原點(diǎn),、分別為、、軸建立空間直角坐標(biāo)系,,,

,

設(shè)平面的法向量為,

,而平面的法向量為

設(shè)二面角的大角為為銳角)

。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知sinα+cosα= ,α∈(0, ),sin(β﹣ )= ,β∈( ).
(1)求sin2α和tan2α的值;
(2)求cos(α+2β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若 {an}是等比數(shù)列,a4a7=﹣512,a3+a8=124,且公比q為整數(shù),則a10=(
A.256
B.﹣256
C.512
D.﹣512

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2sin(ωx+φ)(ω>0,﹣ <φ< )的部分圖象如圖所示;
(1)求ω,φ;
(2)將y=f(x)的圖象向左平移θ(θ>0)個(gè)單位長度,得到y(tǒng)=g(x)的圖象,若y=g(x)圖象的一個(gè)對稱點(diǎn)為( ,0),求θ的最小值.
(3)對任意的x∈[ , ]時(shí),方程f(x)=m有兩個(gè)不等根,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是某四面體的三視圖,則該四面體的外接球半徑為(
A.2
B.
C.
D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐P﹣ABC中,△PAB和△CAB都是以AB為斜邊的等腰直角三角形.
(1)證明:AB⊥PC;
(2)若AB=2PC= ,求三棱錐P﹣ABC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= . (Ⅰ)求函數(shù)f(x)的定義域和值域;
(Ⅱ)判斷函數(shù)f(x)的奇偶性,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在長方體ABCD﹣A1B1C1D1中,BC=2AB=4, ,E是A1D1的中點(diǎn).
(Ⅰ)在平面A1B1C1D1內(nèi),請作出過點(diǎn)E與CE垂直的直線l,并證明l⊥CE;
(Ⅱ)設(shè)(Ⅰ)中所作直線l與CE確定的平面為α,求點(diǎn)C1到平面α的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知長方形ABCD中,AB=2,AD=1,M為DC的中點(diǎn).將△ADM沿AM折起,使得平面ADM⊥平面ABCM,E為BD的中點(diǎn).
(1)求證:BM⊥平面ADM;
(2)求直線AE與平面ADM所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案