如圖,在正方體ABCD-A1B1C1D1中,點(diǎn)P在側(cè)面BCC1B1及其邊界上運(yùn)動(dòng),并且總是保持AP與BD1垂直,則動(dòng)點(diǎn)P的軌跡為______.
如圖,先找到一個(gè)平面總是保持與BD1垂直,
連接AC,AB1,B1C,在正方體ABCD-A1B1C1D1中,
有BD1⊥面ACB1,
又點(diǎn)P在側(cè)面BCC1B1及其邊界上運(yùn)動(dòng),
根據(jù)平面的基本性質(zhì)得:
點(diǎn)P的軌跡為面ACB1與面BCC1B1的交線段CB1
故答案為線段CB1
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

P是△ABC所在平面外一點(diǎn),A′、B′、C′分別是△PBC、△PCA、△PAB的重心,
(1)求證:平面A′B′C′平面ABC;
(2)求SABCS△ABC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,在四棱錐P-ABCD中,底面四邊形ABCD是正方形,PD⊥平面ABCD,E為PC的中點(diǎn).
求證:
(1)PA平面BDE;
(2)AC⊥平面PBD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,正三棱柱ABC-A1B1C1的各棱長(zhǎng)都為m,E是側(cè)棱CC1的中點(diǎn),求證AB1⊥平面A1BE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在三棱柱ABC-A1B1C1中,AB⊥側(cè)面BB1C1C,已知BB1=2,AB=
2
,BC=1,∠BCC1=
π
3

(1)求證:C1B⊥平面ABC;
(2)試在棱CC1(不包含端點(diǎn)C,C1)上確定一點(diǎn)E的位置,使得EA⊥EB1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,三棱錐P-ABC中,PA=AB,PC=BC,E、F、G分別為PA、AB、PB的中點(diǎn),
(1)求證:EF平面PBC;
(2)求證:EF⊥平面ACG.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在長(zhǎng)方體ABCD-A1B1C1D1中,底面ABCD是正方形,E是DD1的中點(diǎn).
(1)求證:AC⊥B1D;
(2)若B1D⊥平面ACE,求
AA1
AB
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知四棱錐S-ABCD的底面ABCD是矩形,M、N分別是CD、SC的中點(diǎn),SA⊥底面ABCD,SA=AD=1,AB=
2

(I)求證:MN⊥平面ABN;
(II)求二面角A-BN-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知M是正四面體ABCD棱AB的中點(diǎn),N是棱CD的中點(diǎn),則下列結(jié)論中,正確的個(gè)數(shù)有( 。
(1)MN⊥AB;
(2)VA-MCD=VB-MCD;
(3)平面CDM⊥平面ABN;
(4)CM與AN是相交直線.
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案