已知,函數(shù)f(x)=logax,若正實(shí)數(shù)m,n滿足f(m)>f(n),則m,n的大小關(guān)系為   
【答案】分析:因?yàn)橐阎獥l件中對數(shù)函數(shù)的底數(shù),即0<a<1,故函數(shù)f(x)=logax在(0,+∞)上為減函數(shù),根據(jù)函數(shù)的單調(diào)性,結(jié)合足f(m)>f(n),不難判斷出m,n的大小關(guān)系.
解答:解:∵
∴0<a<1
∴f(x)=logax在(0,+∞)上為減函數(shù)
若f(m)>f(n)
則m<n
故答案為:m<n
點(diǎn)評:函數(shù)y=ax和函數(shù)y=logax,在底數(shù)a>1時(shí),指數(shù)函數(shù)和對數(shù)函數(shù)在其定義域上均為增函數(shù),當(dāng)?shù)讛?shù)0<a<1時(shí),指數(shù)函數(shù)和對數(shù)函數(shù)在其定義域上均為減函數(shù),而f(-x)與f(x)的圖象關(guān)于Y軸對稱,其單調(diào)性相反,故函數(shù)y=a-x和函數(shù)y=loga(-x),在底數(shù)a>1時(shí),指數(shù)函數(shù)和對數(shù)函數(shù)在其定義域上均為減函數(shù),當(dāng)?shù)讛?shù)0<a<1時(shí),指數(shù)函數(shù)和對數(shù)函數(shù)在其定義域上均為增函數(shù).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知奇函數(shù)f(x)在(-∞,0)∪(0,+∞)上有意義,且在(0,+∞)上是減函數(shù),f(1)=0,又有函數(shù)g(θ)=sin2θ+mcosθ-2m,θ∈[0,
π2
],若集合M={m|g(θ)<0},集合N={m|f[g(θ)]>0}.
(1)解不等式f(x)>0;
(2)求M∩N.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知奇函數(shù)f(x)的定義域?yàn)椋?1,1),當(dāng)x∈(0,1)時(shí),f(x)=
2x2x+1

(1)求f(x)在(-1,1)上的解析式;
(2)判斷f(x)在(0,1)上的單調(diào)性,并證明之.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知冪函數(shù)f(x)=xa的圖象過點(diǎn)(
1
2
,
2
2
)
,則f(x)在(0,+∞)單調(diào)遞

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知奇函數(shù)f(x)在區(qū)間(a,b)上是減函數(shù),證明f(x)在區(qū)間(-b,-a)上仍是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:函數(shù)f(x)=x3-6x2+3x+t,t∈R.
(1)①證明:a3-b3=(a-b)(a2+ab+b2
②求函數(shù)f(x)兩個(gè)極值點(diǎn)所對應(yīng)的圖象上兩點(diǎn)之間的距離;
(2)設(shè)函數(shù)g(x)=exf(x)有三個(gè)不同的極值點(diǎn),求t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案