(08年江西卷)電子鐘一天顯示的時(shí)間是從00:00到23:59,每一時(shí)刻都由四個(gè)數(shù)字組成,則一天中任一時(shí)刻顯示的四個(gè)數(shù)字之和為23的概率為

A.               B.          C.            D.

【解析】:.一天顯示的時(shí)間總共有種,和為23總共有4種,故所求概率為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(08年江西卷理)(本小題滿分12分)

某柑桔基地因冰雪災(zāi)害,使得果林嚴(yán)重受損,為此有關(guān)專家提出兩種拯救果林的方案,每種方案都需分兩年實(shí)施;若實(shí)施方案一,預(yù)計(jì)當(dāng)年可以使柑桔產(chǎn)量恢復(fù)到災(zāi)前的1.0倍、0.9倍、0.8倍的概率分別是0.3、0.3、0.4;第二年可以使柑桔產(chǎn)量為上一年產(chǎn)量的1.25倍、1.0倍的概率分別是0.5、0.5. 若實(shí)施方案二,預(yù)計(jì)當(dāng)年可以使柑桔產(chǎn)量達(dá)到災(zāi)前的1.2倍、1.0倍、0.8倍的概率分別是0.2、0.3、0.5; 第二年可以使柑桔產(chǎn)量為上一年產(chǎn)量的1.2倍、1.0倍的概率分別是0.4、0.6. 實(shí)施每種方案,第二年與第一年相互獨(dú)立。令表示方案實(shí)施兩年后柑桔產(chǎn)量達(dá)到災(zāi)前產(chǎn)量的倍數(shù).

(1).寫出的分布列;

(2).實(shí)施哪種方案,兩年后柑桔產(chǎn)量超過災(zāi)前產(chǎn)量的概率更大?

(3).不管哪種方案,如果實(shí)施兩年后柑桔產(chǎn)量達(dá)不到災(zāi)前產(chǎn)量,預(yù)計(jì)可帶來效益10萬元;兩年后柑桔產(chǎn)量恰好達(dá)到災(zāi)前產(chǎn)量,預(yù)計(jì)可帶來效益15萬元;柑桔產(chǎn)量超過災(zāi)前產(chǎn)量,預(yù)計(jì)可帶來效益20萬元;問實(shí)施哪種方案所帶來的平均效益更大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年江西卷文)

已知拋物線和三個(gè)點(diǎn),過點(diǎn)的一條直線交拋物線于兩點(diǎn),的延長線分別交曲線

(1)證明三點(diǎn)共線;

(2)如果、、四點(diǎn)共線,問:是否存在,使以線段為直徑的圓與拋物線有異于、的交點(diǎn)?如果存在,求出的取值范圍,并求出該交點(diǎn)到直線的距離;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年江西卷文)因冰雪災(zāi)害,某柑桔基地果林嚴(yán)重受損,為此有關(guān)專家提出一種拯救果樹的方案,該方案需分兩年實(shí)施且相互獨(dú)立.該方案預(yù)計(jì)第一年可以使柑桔產(chǎn)量恢復(fù)到災(zāi)前的1.0倍、0.9倍、0.8倍的概率分別是0.2、0.4、0.4;第二年可以使柑桔產(chǎn)量為第一年產(chǎn)量的1.5倍、1.25倍、1.0倍的概率分別是0.3、0.3、0.4.

(1)求兩年后柑桔產(chǎn)量恰好達(dá)到災(zāi)前產(chǎn)量的概率;

(2)求兩年后柑桔產(chǎn)量超過災(zāi)前產(chǎn)量的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年江西卷文)設(shè)直線與平面相交但不垂直,則下列說法中正確的是

A.在平面內(nèi)有且只有一條直線與直線垂直

B.過直線有且只有一個(gè)平面與平面垂直

C.與直線垂直的直線不可能與平面平行

D.與直線平行的平面不可能與平面垂直

查看答案和解析>>

同步練習(xí)冊答案