在三棱錐中,.

(Ⅰ)求證:;
(Ⅱ)求三棱錐的體積.

(Ⅰ)證明過程詳見試題解析;(Ⅱ).

解析試題分析:(Ⅰ)由線線垂直得到線面垂直,再根據(jù)直線所在的平面得到線線垂直;(Ⅱ)根據(jù)三棱錐的體積公式求之.
試題解析:(Ⅰ)證明:因為,所以.
又因為,所以平面,所以.
,所以.所以平面.故.
(Ⅱ)在中,,所以.
又在中,,所以.
又因為平面,所以.
考點:(Ⅰ)線面垂直的性質(zhì)定理;(Ⅱ)三棱錐的體積公式.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

已知某幾何體的俯視圖是如圖所示的矩形,正視圖是一個底邊長為8、高為4的等腰三角形,側(cè)視圖是一個底邊長為6、高為4的等腰三角形.

(1)求該幾何體的體積V;
(2)求該幾何體的側(cè)面積S.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在四棱錐中,底面為直角梯形,且,,平面底面,的中點,是棱的中點,.

(Ⅰ)求證:平面;
(Ⅱ)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在三棱柱中,AC⊥BC,AB⊥,D為AB的中點,且CD⊥。

(Ⅰ)求證:平面⊥平面ABC;
(2)求多面體的體積。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,正三棱柱ABC—A1B1C1的各棱長都相等,M、E分別是和AB1的中點,點F在BC上且滿足BF∶FC=1∶3.

(1)求證:BB1∥平面EFM;
(2)求四面體的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,PA平面ABCD,四邊形ABCD為矩形,PA=AB=,AD=1,點F是PB的中點,點E在邊BC上移動.

(I)求三棱錐E—PAD的體積;
(II)試問當點E在BC的何處時,有EF//平面PAC;
(1lI)證明:無論點E在邊BC的何處,都有PEAF.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在三棱柱中,側(cè)棱底面,的中點,.

(Ⅰ)求證://平面;
(Ⅱ)設(shè),求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在直三棱柱中,分別為、的中點,上的點,且

(I)證明:∥平面;
(Ⅱ)若,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在長方體ABCD-A1B1C1D1中,AB=AD=3cm,AA1=2cm,則四棱錐A-BB1D1D的體積為    cm3.

查看答案和解析>>

同步練習冊答案