分析 由已知,結合韋達定理得:a=2,b=-3,則f(x)-ax=0可化為:x2+4x-3=0,解方程可得答案.
解答 解:f(x)-x=0,即x2-(a+1)x+b=0.
設x2-(a+1)x+b=0的兩根分別為x1,x2,
∵A={1,-3},
由韋達定理,得
x1+x2=-$\frac{-(a+1)}{1}$,x1x2=b
即1+(-3)=a+1,b=-3
解得a=-3,b=-3
∴f(x)=x2+3x-3.
f(x)-ax=0,亦即x2+6x-3=0.
∴B={x|x2+4x-3=0}={-3-2$\sqrt{3}$,-3+2$\sqrt{3}$}.
點評 本題考查的知識點是列舉法表示集合,其中根據(jù)已知結合韋達定理求出a,b的值,是解答的關鍵.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 如果平面α⊥平面β,那么平面α內(nèi)一定存在直線平行于平面β | |
B. | 如果平面α⊥平面β,那么平面α內(nèi)所有直線都垂直于平面β | |
C. | 如果直線a∥平面α,那么a平行于平面α內(nèi)的無數(shù)條直線 | |
D. | 如果平面α不垂直于平面β,那么平面α內(nèi)一定不存在直線垂直于平面β |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | p1,p2 | B. | p2,p3 | C. | p2,p4 | D. | p3,p4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com