(12分)已知函數(shù)f(x)=ax3+3x2-x+1在R上是減函數(shù),求實(shí)數(shù)a的取值范圍.

解析:f′(x)=3ax2+6x-1,其判別式△=36+12a.                          (4分)

當(dāng)a<-3時(shí),有△<0,∴f′(x)<0,f(x)在R上是減函數(shù);            (6分)

當(dāng)a=-3時(shí),有△=0,此時(shí),由于y=-x3R上的減函數(shù),所以f(x)在R上是減函數(shù);                                                                        (8分)

當(dāng)a>-3且a≠0時(shí),有△>0,在R上存在區(qū)間A,使得當(dāng)x∈A時(shí),有f′(x)>0,此時(shí)f(x)在R上不是減函數(shù).

當(dāng)a=0時(shí)f(x)=3x2-x+1,不是R上的減函數(shù),                                 (10分)

    綜上所述,所求a的取值范圍是(-∞,-3].                                   (12分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

( 本題滿(mǎn)分12分 )
已知函數(shù)f(x)=cos4x-2sinxcosx-sin4x
(I)求f(x)的最小正周期;
(II)若x∈[0,
π2
]
,求f(x)的最大值,最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年安徽省蚌埠市懷遠(yuǎn)縣包集中學(xué)高三(下)第七次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

( 本題滿(mǎn)分12分 )
已知函數(shù)f(x)=cos4x-2sinxcosx-sin4x
(I)求f(x)的最小正周期;
(II)若,求f(x)的最大值,最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年河南省高三12月月考理科數(shù)學(xué)卷 題型:解答題

(本小題滿(mǎn)分12分)

已知函數(shù)f(x)=(x∈R),P1(x1,y1),P2(x2,y2)是函數(shù)y=f(x)圖像上兩點(diǎn),且線(xiàn)段P1P2中點(diǎn)P的橫坐標(biāo)為。

(1)求證P的縱坐標(biāo)為定值;    (4分)

(2)若數(shù)列{}的通項(xiàng)公式為=f()(m∈N,n=1,2,3,…,m),求數(shù)列{}的前m項(xiàng)和;     (5分)

(3)若m∈N時(shí),不等式橫成立,求實(shí)數(shù)a的取值范圍。(3分)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012年山東省濟(jì)寧市高二上學(xué)期期中考試文科數(shù)學(xué) 題型:解答題

(本小題滿(mǎn)分12分)

    已知函數(shù)f()=,當(dāng)∈(-2,6)時(shí),其值為正,而當(dāng)∈(-∞,-2)∪(6,+∞)時(shí),其值為負(fù)

(I)        求實(shí)數(shù)的值及函數(shù)f()的解析式

(II)設(shè)F()= -f()+4+12,問(wèn)取何值時(shí),方程F()=0有正根?

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年吉林省高二下學(xué)期期中考試數(shù)學(xué)(理) 題型:解答題

(本小題滿(mǎn)分12分)

       已知函數(shù)f x)=alnxxa為實(shí)常數(shù)).[來(lái)源:ZXXK][來(lái)源:學(xué)*科*網(wǎng)Z*X*X*K]

   (Ⅰ)若a=-2,求證:函數(shù)f x)在(1,+∞)上是增函數(shù);

   (Ⅱ)求函數(shù)fx)在[1,e]上的最小值及相應(yīng)的x值;

   (Ⅲ)若當(dāng)x∈[1,e]時(shí),fx)≤(a+2)x恒成立,求實(shí)數(shù)a的取值范圍.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案