1.設(shè)函數(shù)${f_0}(x)={({\frac{1}{2}})^{|x|}}$,${f_1}(x)=|{{f_0}(x)-\frac{1}{2}}|$,${f_n}(x)=|{{f_{n-1}}(x)-{{({\frac{1}{2}})}^n}}|$,則方程${f_n}(x)={({\frac{1}{n+2}})^n}$有2n+1個(gè)實(shí)數(shù)根.

分析 分別n=1,2,3,再歸納法即可求出答案.

解答 解:當(dāng)n=1時(shí),f1(x)=|($\frac{1}{2}$)|x|-$\frac{1}{2}$|=$\frac{1}{3}$,即當(dāng)-1≤x≤1時(shí),($\frac{1}{2}$)|x|=$\frac{5}{6}$,或x<-1或x>1時(shí),($\frac{1}{2}$)|x|=$\frac{1}{6}$,此時(shí)方程有22個(gè)解,
當(dāng)n=2時(shí),f2(x)=|f1(x)-$\frac{1}{4}$|=$\frac{1}{16}$,即f1(x)=$\frac{5}{16}$,f1(x)=$\frac{3}{16}$,此時(shí)方程有23個(gè)解,
當(dāng)n=3時(shí),f3(x)=|f2(x)-$\frac{1}{8}$|=$\frac{1}{125}$,即f2(x)=$\frac{133}{1000}$,f2(x)=$\frac{117}{1000}$,此時(shí)方程有24個(gè)解,
依此類推,方程${f_n}(x)={({\frac{1}{n+2}})^n}$有2n+1個(gè)解.
故答案為:2n+1

點(diǎn)評(píng) 本題主要考查方程的根的存在性及個(gè)數(shù)判斷,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知直線y=x+b與橢圓$\frac{{x}^{2}}{2}$+y2=1相交于A,B兩個(gè)不同的點(diǎn).
(1)求實(shí)數(shù)b的取值范圍;
(2)已知弦AB的中點(diǎn)P的橫坐標(biāo)是$-\frac{2}{3}$,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.給出下列語(yǔ)句:
①若a,b∈R+,a≠b,則a3+b3>a2b+ab2;
②若a,b,m∈R+,a<b,則$\frac{a+m}{b+m}$<$\frac{a}$;
③命題:若x2=1,則x=1或x=-1的逆否命題為:若x≠1且x≠-1,則x2≠1.
④當(dāng)x∈(0,$\frac{π}{2}$)時(shí),sin x+$\frac{2}{sinx}$的最小值為2$\sqrt{2}$,
其中結(jié)論正確的序號(hào)為①③(填入所有正確的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知△ABC的三頂點(diǎn)分別為A(1,4,1),B(1,2,3),C(2,3,1).則AB邊上的高等于( 。
A.$\frac{{\sqrt{6}}}{2}$B.$\sqrt{6}$C.2D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.命題“?x>0,都有x≥1”的否定為?x>0,使得x<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.若f(x)是定義域?yàn)镽,最小正周期$\frac{3π}{2}$的函數(shù),若f(x)=sinx,x∈[0,π],則f($\frac{15π}{4}$)=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知集合A={x|2a≤x≤a+3},B={x|x<-1或x>1}
(Ⅰ)若a=0,求A∩B;
(Ⅱ)若A∪B=R,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.給出下列四個(gè)命題:
①函數(shù)y=|x|與函數(shù)y=($\sqrt{x}$)2表示同一個(gè)函數(shù);
②奇函數(shù)的圖象一定通過直角坐標(biāo)系的原點(diǎn);
③函數(shù)y=3(x-1)2的圖象可由y=3x2的圖象向右平移1個(gè)單位得到;
④logamn=nlogam(a>0且a≠1,m>0,n∈R)
其中正確命題的序號(hào)是③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.設(shè)雙曲線C:$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{^{2}}$=1(a>0,b>0)的上、下焦點(diǎn)分別為F1,F(xiàn)2,若在雙曲線C的下支上存在一點(diǎn)P使得|PF1|=4|PF2|,則雙曲線C的離心率的取值范圍為( 。
A.[$\frac{4}{3}$,+∞)B.(1,$\frac{4}{3}$]C.[$\frac{5}{3}$,+∞)D.(1,$\frac{5}{3}$]

查看答案和解析>>

同步練習(xí)冊(cè)答案