已知函數(shù)ft(x)=(x-t)2-t(t∈R),設(shè)a<b,f(x)=
fa(x),fa(x)<fb(x)
fb(x),fa(x)≥fb(x)
,若函數(shù)f(x)+x+a-b有四個零點(diǎn),則b-a的取值范圍是( 。
A、(2+
5
,+∞)
B、(0,2+
5
)
C、(0,2+
3
)
D、(2+
3
,+∞)
考點(diǎn):函數(shù)的零點(diǎn)與方程根的關(guān)系,根的存在性及根的個數(shù)判斷
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:解方程fa(x)=fb(x)得交點(diǎn)P(
a+b-1
2
(
b-a-1
2
)
2
-a),函數(shù)f(x)的圖象與直線l:y=-x+b-a有四個不同的交點(diǎn),由圖象知,點(diǎn)P在l的上方,故
a+b-1
2
+(
b-a-1
2
)
2
-a-(b-a)>0,由此解得b-a的取值范圍.
解答: 解:作函數(shù)f(x)的圖象,解方程fa(x)=fb(x)
得x=
a+b-1
2
,
即交點(diǎn)P(
a+b-1
2
(
b-a-1
2
)
2
-a),
又函數(shù)f(x)+x+a-b有四個零點(diǎn),
即函數(shù)f(x)的圖象與直線l:y=-x+b-a
有四個不同的交點(diǎn).
由圖象知,點(diǎn)P在l的上方,所以,
a+b-1
2
+(
b-a-1
2
)
2
-a-(b-a)>0,
解得b-a>2-
5

故選A.
點(diǎn)評:本題主要考查根的存在性以及根的個數(shù)判斷,函數(shù)的零點(diǎn)與方程的根的關(guān)系,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知一個幾何體的三視圖如圖所示,則該幾何體的表面積為( 。
A、24+6π
B、24+4π
C、28+6π
D、28+4π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}是等差數(shù)列,其前n項(xiàng)和為Sn,{bn}是等比數(shù)列(bn>0),且a1=b1=2,a3+b3=16,S4+b3=34.
(1)求數(shù)列{an}與{bn}的通項(xiàng)公式;  
 (2)記Tn為數(shù)列{anbn}的前n項(xiàng)和,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為構(gòu)成數(shù)列{bn},數(shù)列{bn}的前n項(xiàng)和構(gòu)成數(shù)列{cn}.若bn=(2n-1)•3n+4,則
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{cn}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=x+
a
x
有如下性質(zhì):如果常數(shù)a>0,那么該函數(shù)在(0,
a
]
上是減函數(shù),在[
a
,+∞)
上是增函數(shù).
(Ⅰ)若函數(shù)y=x+
2b
x
(x>0)的值域?yàn)閇6,+∞),求實(shí)數(shù)b的值;
(Ⅱ)已知f(x)=
4x2-12x-3
2x+1
,x∈[0,1]
,求函數(shù)f(x)的單調(diào)區(qū)間和值域;
(Ⅲ)對于(Ⅱ)中的函數(shù)f(x)和函數(shù)g(x)=-x-2c,若對任意x1∈[0,1],總存在x2∈[0,1],使得g(x2)=f(x1)成立,求實(shí)數(shù)c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知遞增等比數(shù)列{an}的第三項(xiàng)、第五項(xiàng)、第七項(xiàng)的積為512,且這三項(xiàng) 分別減去1,3,9后成等差數(shù)列.
(1)求{an}的首項(xiàng)和公比;
(2)設(shè)Sn=a12+a22+…+an2,求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若0<m<1,則( 。
A、logm(1+m)>logm(1-m)
B、logm(1+m)>0
C、1-m>(1+m)2
D、(1-m)
1
3
>(1-m)
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+bx+2,g(x)=|x2-1|,x∈R.
(1)若函數(shù)f(x)滿足f(3+x)=f(-x),求使不等式f(x)≥g(x)成立的x的取值集合;
(2)若函數(shù)h(x)=f(x)+g(x)+2在(0,2)上有兩個不同的零點(diǎn)x1,x2求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(4,5),
b
=(8,y)且
a
b
,則y等于( 。
A、5
B、10
C、
32
5
D、15

查看答案和解析>>

同步練習(xí)冊答案