A. | $f(x)={log_2}(\sqrt{{x^2}+1}-x)$ | B. | $f(x)=\frac{1}{x}$ | C. | f(x)=x2-x3 | D. | f(x)=sinx |
分析 根據(jù)函數(shù)的奇偶性定義、對數(shù)函數(shù)的單調(diào)性、復(fù)合函數(shù)的單調(diào)性判斷A;根據(jù)基本初等函數(shù)奇偶性和單調(diào)性的性質(zhì)分別判斷B、C、D即可.
解答 解:A.$f(x)=lo{g}_{2}(\sqrt{{x}^{2}+1}-x)$的定義域是R,
且$f(-x)=lo{g}_{2}(\sqrt{{x}^{2}+1}+x)$=$lo{g}_{2}(\sqrt{{x}^{2}+1}-x)^{-1}$=-f(x),
所以f(x)是奇函數(shù),
因?yàn)閥=$\sqrt{{x}^{2}+1}-x$=$\frac{1}{\sqrt{{x}^{2}+1}+x}$在定義域上是減函數(shù),
所以函數(shù)$f(x)=lo{g}_{2}(\sqrt{{x}^{2}+1}-x)$在定義域上是減函數(shù),滿足條件;
B.$f(x)=\frac{1}{x}$是定義域{x|x≠0}上的奇函數(shù),在(-∞,0),(0,+∞)上是減函數(shù),
但是在定義域上不是減函數(shù),不滿足條件;
C.因?yàn)閒(-x)=(-x)2-(-x)3=x2+x3,所以f(x)是非奇非偶函數(shù),不滿足條件;
D.f(x)=sinx是奇函數(shù),在定義域上不是單調(diào)函數(shù),不滿足條件.
故選:A.
點(diǎn)評 本題考查函數(shù)奇偶性和單調(diào)性的判斷,以及對數(shù)函數(shù)的單調(diào)性、復(fù)合函數(shù)的單調(diào)性,熟練掌握常見函數(shù)的奇偶性和單調(diào)性是解題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 9 | B. | $\frac{28}{3}$ | C. | $\frac{32}{3}$ | D. | 12 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com