10.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,O為坐標(biāo)原點(diǎn),P是雙曲線在第一象限上的點(diǎn)且滿足|PF1|=2|PF2|,直線PF2交雙曲線C于另一點(diǎn)N,又點(diǎn)M滿足$\overrightarrow{MO}$=$\overrightarrow{OP}$且∠MF2N=120°,則雙曲線C的離心率為( 。
A.$\frac{2\sqrt{3}}{3}$B.$\sqrt{7}$C.$\sqrt{3}$D.$\sqrt{2}$

分析 由題意,|PF1|=2|PF2|,|PF1|-|PF2|=2a,可得|PF1|=4a,|PF2|=2a,由∠MF2N=120°,可得∠F1PF2=120°,由余弦定理可得4c2=16a2+4a2-2•4a•2a•cos120°,即可求出雙曲線C的離心率.

解答 解:由題意,|PF1|=2|PF2|,
由雙曲線的定義可得,|PF1|-|PF2|=2a,
可得|PF1|=4a,|PF2|=2a,
由四邊形PF1MF2為平行四邊形,
又∠MF2N=120°,可得∠F1PF2=120°,
在三角形PF1F2中,由余弦定理可得
4c2=16a2+4a2-2•4a•2a•cos120°,
即有4c2=20a2+8a2,即c2=7a2
可得c=$\sqrt{7}$a,
即e=$\frac{c}{a}$=$\sqrt{7}$.
故選:B.

點(diǎn)評(píng) 本題考查雙曲線C的離心率,注意運(yùn)用雙曲線的定義和三角形的余弦定理,考查學(xué)生的計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=ax2+4x-1.
(1)當(dāng)a=1時(shí),對(duì)任意x1,x2∈R,且x1≠x2,試比較f($\frac{{x}_{1}+{x}_{2}}{2}$)與$\frac{f({x}_{1})+f({x}_{2})}{2}$的大;
(2)對(duì)于給定的正實(shí)數(shù)a,有一個(gè)最小的負(fù)數(shù)g(a),使得x∈[g(a),0]時(shí),-3≤f(x)≤3都成立,則當(dāng)a為何值時(shí),g(a)最小,并求出g(a)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知函數(shù)f(x)=x2+2x+a,g(x)=lnx-2x,如果存在${x_1}∈[{\frac{1}{2},2}]$,使得對(duì)任意的${x_2}∈[{\frac{1}{2},2}]$,都有f(x1)≤g(x2)成立,則實(shí)數(shù)a的取值范圍是(-∞,ln2-$\frac{21}{4}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知向量$\overrightarrow{a}$=(-3,4),$\overrightarrow$=(2,2).
(Ⅰ)求$\overrightarrow{a}$與$\overrightarrow$夾角的余弦值;
(Ⅱ)λ為何值時(shí),$\overrightarrow{a}$+λ$\overrightarrow$與$\overrightarrow{a}$垂直.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)相量$\overrightarrow{a}$=(2,3),$\overrightarrow$=(-1,2),若m$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$-2$\overrightarrow$垂直,則實(shí)數(shù)m等于( 。
A.-$\frac{6}{5}$B.$\frac{6}{5}$C.$\frac{9}{10}$D.-$\frac{9}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知橢圓C:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{^{2}}$=1(a>b>0)的短軸長(zhǎng)為2$\sqrt{3}$,離心率為$\frac{1}{2}$,點(diǎn)F為其在y軸正半軸上的焦點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)若一動(dòng)圓過點(diǎn)F,且與直線y=-1相切,求動(dòng)圓圓心軌跡C1的方程;
(Ⅲ)過F作互相垂直的兩條直線l1,l2,其中l(wèi)1交曲線C1于M、N兩點(diǎn),l2交橢圓C于P、Q兩點(diǎn),求四邊形PMQN面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知點(diǎn)A($\sqrt{3}$,0)和P($\sqrt{3}$,t)(t∈R),若曲線x2+y2=3上存在點(diǎn)B使∠APB=60°,則t的最大值為(  )
A.$\sqrt{3}$B.2C.1+$\sqrt{3}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在復(fù)平面內(nèi),復(fù)數(shù)$\frac{3i}{1-i}$對(duì)應(yīng)的點(diǎn)在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在某校舉行的航天知識(shí)競(jìng)賽中,參與競(jìng)賽的文科生與理科生人數(shù)之比為1:3,且成績(jī)分布在[40,100],分?jǐn)?shù)在80以上(含80)的同學(xué)獲獎(jiǎng).按文理科用分層抽樣的方法抽取200人的成績(jī)作為樣本,得到成績(jī)的頻率分布直方圖(見圖).
(1)填寫下面的2×2列聯(lián)表,能否有超過95%的把握認(rèn)為“獲獎(jiǎng)與學(xué)生的文理科有關(guān)”?
(2)將上述調(diào)査所得的頻率視為概率,現(xiàn)從參賽學(xué)生中,任意抽取3名學(xué)生,記“獲獎(jiǎng)”學(xué)生人數(shù)為X,求X的分布列及數(shù)學(xué)期望.
文科生理科生合計(jì)
獲獎(jiǎng)5
不獲獎(jiǎng)
合計(jì)200
附表及公式:
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

同步練習(xí)冊(cè)答案