數(shù)軸上有一列點(diǎn),已知當(dāng)n≥2時(shí),點(diǎn)是把線段等分的分點(diǎn)中最靠近的點(diǎn),設(shè)線段的長(zhǎng)度分別為,其中
(Ⅰ)寫(xiě)出的表達(dá)式;
(Ⅱ)證明;
(Ⅲ)設(shè)點(diǎn),在這些點(diǎn)中是否存在兩個(gè)點(diǎn)同時(shí)在函數(shù)的圖象上,如果存在,請(qǐng)求出點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.
【答案】分析:(Ⅰ)依題意當(dāng)n≥2時(shí),Pn-1Pn=(n-1)PnPn+1,結(jié)合已知可得an與an-1的遞推公式,結(jié)合,代入即可求解
(Ⅱ)由(I)可知,,利用放縮法,結(jié)合等比數(shù)列的求和公式可證
(Ⅲ)先假設(shè)存在兩個(gè)點(diǎn)都在函數(shù)的圖象上,把點(diǎn)的 坐標(biāo)代入可得,然后進(jìn)行推理,即可判斷
解答:解:(Ⅰ)依題意當(dāng)n≥2時(shí),有,
,
,,

(Ⅱ)證明:因?yàn)楫?dāng)n≥2時(shí),

,
顯然成立,
;
(Ⅲ)證明:假設(shè)存在兩個(gè)點(diǎn)(其中p≠q,p,q∈N*,p>2,q>2)都在函數(shù)的圖象上,
,

,
,
不成立,故不存在滿足題設(shè)條件的兩個(gè)點(diǎn).
點(diǎn)評(píng):本題綜合考查了數(shù)列的遞推公式的應(yīng)用,不等式的放縮法在證明不等式中的應(yīng)用,等比數(shù)列 的求和公式的應(yīng)用及存在性問(wèn)題的求解
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)軸上有一列點(diǎn)
P
 
1
,
P
 
2
,
P
 
3
,…,
P
 
n
,…
,已知當(dāng)n≥2時(shí),點(diǎn)
P
 
n
是把線段
P
 
n-1
P
 
n+1
作n
等分的分點(diǎn)中最靠近
P
 
n+1
的點(diǎn),設(shè)線段
P
 
1
P
 
2
P
 
2
P
 
3
,…,
P
 
n
P
 
n+1
的長(zhǎng)度分別為
a
 
1
,
a
 
2
,
a
 
3
,…,
a
 
n
,其中
a
 
1
=1

(Ⅰ)寫(xiě)出
a
 
2
,
a
 
3
a
 
n
(n≥2,n∈N*)
的表達(dá)式;
(Ⅱ)證明
a
 
1
+
a
 
2
+
a
 
3
+…+
a
 
n
<3(n∈N*)
;
(Ⅲ)設(shè)點(diǎn)
M
 
n
(n,
a
 
n
)(n>2,n∈N*)
,在這些點(diǎn)中是否存在兩個(gè)點(diǎn)同時(shí)在函數(shù)y=
k
(x-1)2
(k>0)
的圖象上,如果存在,請(qǐng)求出點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案