【題目】已知集合 ,B={y|y=2x+1,x∈R},則R(A∩B)=( )
A.(﹣∞,1]
B.(﹣∞,1)
C.(0,1]
D.[0,1]
【答案】A
【解析】解:由A中不等式變形得:x(x﹣1)≥0,且x﹣1≠0,
解得:x≤0或x>1,即A=(﹣∞,0]∪(1,+∞),
由B中y=2x+1>1,即B=(1,+∞),
∴A∩B=(1,+∞),
則R(A∩B)=(﹣∞,1],
故選:A.
【考點精析】解答此題的關鍵在于理解交、并、補集的混合運算的相關知識,掌握求集合的并、交、補是集合間的基本運算,運算結果仍然還是集合,區(qū)分交集與并集的關鍵是“且”與“或”,在處理有關交集與并集的問題時,常常從這兩個字眼出發(fā)去揭示、挖掘題設條件,結合Venn圖或數(shù)軸進而用集合語言表達,增強數(shù)形結合的思想方法.
科目:高中數(shù)學 來源: 題型:
【題目】給定下列命題:①“若α=,則tan α=1”的逆否命題;②若f(x)=cos x,則f(x)為周期函數(shù);③“若a=b,則|a|=|b|”的逆命題;④“若xy=0,則x,y中至少有一個為零”的否命題.其中真命題的序號是______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知公差不為零的等差數(shù)列{an}中, S2=16,且成等比數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{|an|}的前n項和Tn.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,斜三棱柱中,側面為菱形,底面是等腰直角三角形,,C.
(1)求證:直線直線;
(2)若直線與底面ABC成的角為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】海水養(yǎng)殖場進行某水產(chǎn)品的新、舊網(wǎng)箱養(yǎng)殖方法的產(chǎn)量對比,收獲時各隨機抽取了100個網(wǎng)箱,測量各箱水產(chǎn)品的產(chǎn)量(單位:kg), 其頻率分布直方圖如下:
(1)記A表示事件“舊養(yǎng)殖法的箱產(chǎn)量低于50 kg”,估計A的概率;
(2)填寫下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有99%的把握認為箱產(chǎn)量與養(yǎng)殖方法有關:
箱產(chǎn)量<50 kg | 箱產(chǎn)量≥50 kg | |
舊養(yǎng)殖法 | ||
新養(yǎng)殖法 |
(3)根據(jù)箱產(chǎn)量的頻率分布直方圖,對這兩種養(yǎng)殖方法的優(yōu)劣進行比較.
附:
P() | 0.050 0.010 0.001 |
k | 3.841 6.635 10.828 |
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,點在橢圓上.
()求橢圓的方程.
()設動直線與橢圓有且僅有一個公共點,判斷是否存在以原點為圓心的圓,滿足此圓與相交于兩點, (兩點均不在坐標軸上),且使得直線、的斜率之積為定值?若存在,求此圓的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓x2+2y2=1,過原點的兩條直線l1和l2分別于橢圓交于A、B和C、D,記得到的平行四邊形ACBD的面積為S.
(1)設A(x1 , y1),C(x2 , y2),用A、C的坐標表示點C到直線l1的距離,并證明S=2|x1y2﹣x2y1|;
(2)設l1與l2的斜率之積為﹣ ,求面積S的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,ABCD是邊長為a的正方形,PA⊥平面ABCD.
(1)若PA=AB,點E是PC的中點,求直線AE與平面PCD所成角的正弦值;
(2)若BE⊥PC且交點為E,BE=a,G為CD的中點,線段AB上是否存在點F,使得EF∥平面PAG?若存在,求AF的長;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com