在直角坐標平面上以原點為圓心,以1為半徑的圓內任取兩點A(xA,yA)、B(xB,yB),設點(x,y)是以線段AB為直徑的圓上任一點,求證x2+y2<2

 

答案:
解析:

AB為直徑的圓的方程是

x2+y2-(xA+xB)x-(yA+yB)y+xAxB+yAyB=0,

x2+y2=(xA+xB)x+(yA+yB)yxAxByAyB

x2+y2<2

 


練習冊系列答案
相關習題

科目:高中數(shù)學 來源:大連二十三中學2011學年度高二年級期末測試試卷數(shù)學(理) 題型:解答題

(12分)在平面直角坐標系中,已知曲線上的所有點

的橫坐標、縱坐標分別伸長為原來的的倍后得到曲線。以平面直角坐標系的原

為極點,軸的正半軸為極軸,取相同的單位長度建立極坐標系,直線

。(1)試寫出直線的直角坐標方程和曲線的參數(shù)方程;(2)

在曲線上求一點,使點到直線的距離最大,并求出此最大值。

 

查看答案和解析>>

同步練習冊答案