(2012•長春一模)“a<-2”是“函數(shù)f(x)=ax+3在區(qū)間[-1,2]上存在零點x0”的( 。
分析:我們可以根據(jù)充分、充要條件的定義進行判斷.
①若p⇒q為真命題且q⇒p為假命題,則命題p是命題q的充分不必要條件;
②若p⇒q為假命題且q⇒p為真命題,則命題p是命題q的必要不充分條件;
③若p⇒q為真命題且q⇒p為真命題,則命題p是命題q的充要條件;
④若p⇒q為假命題且q⇒p為假命題,則命題p是命題q的即不充分也不必要條件.
解答:解:∵a<-2,f(x)=ax+3,
∴f(0)=3>0,f(2)=2a+3<2×(-2)+3=-1<0,f(0)•f(2)<0
∴函數(shù)f(x)=ax+3在區(qū)間[-1,2]上存在零點x0
∴a<-2”是“函數(shù)f(x)=ax+3在區(qū)間[-1,2]上存在零點x0”的充分條件;
反之,若函數(shù)f(x)=ax+3在區(qū)間[-1,2]上存在零點,則f(-1)•f(2)≤0,即(-a+3)(2a+3)≤0解得a≤-
3
2
或a≥3

∴a<-2不是“函數(shù)f(x)=ax+3在區(qū)間[-1,2]上存在零點的必要條件.
故選A.
點評:本題考查充分、充要條件的判斷方法,我們可以根據(jù)充分、充要條件的定義進行判斷,解題的關鍵是零點存在性定理的正確使用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2012•長春一模)設集合A={x||x|≤2,x∈R},B={y|y=-x2,-1≤x≤2},則?R(A∩B)等于(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•長春一模)選修4-4:坐標系與參數(shù)方程
在極坐標系中,O為極點,半徑為2的圓C的圓心的極坐標為(2,
π
3
)

(1)求圓C的極坐標方程;
(2)P是圓C上一動點,點Q滿足3
OP
=
OQ
,以極點O為原點,以極軸為x軸正半軸建立直角坐標系,求點Q的軌跡的直角坐標方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•長春一模)選修4-5:不等式選講
已知函數(shù)f(x)=|x-1|+|2x+2|.
(Ⅰ)解不等式f(x)>5;
(Ⅱ)若不等式f(x)<a(a∈R)的解集為空集,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•長春一模)若復數(shù)(a+i)2在復平面內(nèi)對應的點在y軸負半軸上,則實數(shù)a的值是(  )

查看答案和解析>>

同步練習冊答案