【題目】在女子十米跳臺比賽中,已知甲、乙兩名選手發(fā)揮正常的概率分別為0.90.85,求

(1)甲、乙兩名選手發(fā)揮均正常的概率;

(2)甲、乙兩名選手至多有一名發(fā)揮正常的概率;

(3)甲、乙兩名選手均出現(xiàn)失誤的概率.

【答案】(1) 0.765 (2) 0.235 (3) 0.015

【解析】設(shè)事件A,B分別表示甲、乙兩名選手發(fā)揮正常,由題意可知,事件A,B相互獨立,且P(A)=0.9,P(B)=0.85.

(1)兩名選手發(fā)揮均正常的概率P=P(AB)=P(A)P(B)=0.9×0.85=0.765.

(2)對立事件為“甲、乙兩名選手發(fā)揮均正!,故所求事件的概率P=1-P(AB)=1-0.765=0.235.

(3)依題意可知,所求事件的概率P=P()=P()P()=(1-P(A))(1-P(B))=(1-0.9)×(1-0.85)=0.015.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,橢圓 的離心率為,以原點為圓心,橢圓的短半軸長為半徑的圓與直線相切.

(1)求橢圓的方程;

(2)已知點,設(shè)是橢圓上關(guān)于軸對稱的不同兩點,直線相交于點,求證:點在橢圓上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)在點處取得極值.

(1)求的值;

(2)若有極大值,求上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,, 兩個小島相距海里,島在島的正南方,現(xiàn)在甲船從島出發(fā),以海里/時的速度向島行駛,而乙船同時以海里/時的速度離開島向南偏東方向行駛,行駛多少時間后,兩船相距最近?并求出兩船的最近距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)試求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若不等式對任意的恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求的值;

(2)若函數(shù)在區(qū)間是單調(diào)遞增函數(shù),求實數(shù)的取值范圍;

(3)若關(guān)于的方程在區(qū)間內(nèi)有兩個實數(shù)根,,求實數(shù)的取值范圍 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在ABC中,a=b·cos C+c·cos B,其中a,b,c分別為角A,B,C的對邊,在四面體PABC中,S1,S2,S3,S分別表示PAB,PBC,PCA,ABC的面積,α,β,γ依次表示面PAB,面PBC,面PCA與底面ABC所成二面角的大。寫出對四面體性質(zhì)的猜想,并證明你的結(jié)論

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知任意角以坐標(biāo)原點為頂點,軸的非負(fù)半軸為始邊,若終邊經(jīng)過點,且,定義:,稱“”為“正余弦函數(shù)”,對于“正余弦函數(shù)”,有同學(xué)得到以下性質(zhì):

①該函數(shù)的值域為; ②該函數(shù)的圖象關(guān)于原點對稱;

③該函數(shù)的圖象關(guān)于直線對稱; ④該函數(shù)為周期函數(shù),且最小正周期為;

⑤該函數(shù)的遞增區(qū)間為.

其中正確的是__________.(填上所有正確性質(zhì)的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列的前項和為,且

(1)求數(shù)列的通項公式;

(2)若數(shù)列滿足:,求 的通項公式;

(3)令,求數(shù)列的前項和.

查看答案和解析>>

同步練習(xí)冊答案