Loading [MathJax]/jax/output/CommonHTML/jax.js
2.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若Sm-2=-4,Sm=0,Sm+2=12,則第m項(xiàng)am=( �。�
A.0B.1C.3D.8

分析 根據(jù)等差數(shù)列的通項(xiàng)公式和前n項(xiàng)和公式,建立方程,即可得出結(jié)論.

解答 解:∵等差數(shù)列{an}的前n項(xiàng)和為Sn,Sm-2=-4,Sm=0,Sm+2=12,
∴am+am-1=Sm-Sm-2=0+4=4,
am+2+am+1=Sm+2-Sm=12-0=12,
{a1+m1d+a1+m2d=2a1+m+1d+a1+md=12
解得d=2,
∴am=12(am+am-1+d)=12(4+2)=3.
故選:C.

點(diǎn)評(píng) 本題考查等差數(shù)列的第m項(xiàng)的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意等差數(shù)列的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知n=911x2dx,在二項(xiàng)式x2xn的展開式中,x2的系數(shù)是60.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知sin(π6+α)=13,則cos(2π3-2α)=( �。�
A.429B.89C.-79D.79

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,四邊形ABCD中,AD∥BC,∠DAC=45°,∠ADC=60°,DC=6,AB=32
(1)求AC的長(zhǎng);
(2)求∠ABC的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知△ABC中,角A,B,C所對(duì)的邊分別是a,b,c,a2+2c2+23csinA=2b+4c,且14sinC=33
(1)求A的大�。�
(2)若c=3,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)f(x)=x-1-lnx,對(duì)定義域內(nèi)任意x都有f(x)≥kx-2,則實(shí)數(shù)k的取值范圍是( �。�
A.(-∞,1-1e2]B.(-∞,-1e2]C.[-1e2,+∞)D.[1-1e2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=|x+1|+|x-2|,f(x)-m≥0恒成立.
(1)求實(shí)數(shù)m的取值范圍;
(2)m的最大值為n,解不等式|x-3|-2x≤n+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知指數(shù)函數(shù)y=g(x)的圖象經(jīng)過點(diǎn)(2,4),且定義域?yàn)镽的函數(shù)f(x)=bgxa+gx是奇函數(shù).
(1)求f(x)的解析式,判斷f(x)在定義域R上的單調(diào)性,并給予證明;
(2)若關(guān)于x的方程f(x)=m在[-1,0)上有解,求f(1m)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知數(shù)列{an}中,a1=4,an=an-1+2n-1+3(n≥2,n∈N*).
(Ⅰ)證明數(shù){an-2n}是等差數(shù)列,并求{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=an-3n,求bn的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案