A. | 0 | B. | 1 | C. | 3 | D. | 8 |
分析 根據(jù)等差數(shù)列的通項(xiàng)公式和前n項(xiàng)和公式,建立方程,即可得出結(jié)論.
解答 解:∵等差數(shù)列{an}的前n項(xiàng)和為Sn,Sm-2=-4,Sm=0,Sm+2=12,
∴am+am-1=Sm-Sm-2=0+4=4,
am+2+am+1=Sm+2-Sm=12-0=12,
即{a1+(m−1)d+a1+(m−2)d=2a1+(m+1)d+a1+md=12,
解得d=2,
∴am=12(am+am-1+d)=12(4+2)=3.
故選:C.
點(diǎn)評(píng) 本題考查等差數(shù)列的第m項(xiàng)的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意等差數(shù)列的性質(zhì)的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,1-1e2] | B. | (-∞,-1e2] | C. | [-1e2,+∞) | D. | [1-1e2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com