設x,y∈R,且滿足x-y+2=0,則的最小值為    若x,y又滿足y>4-x,則的取值范圍是   
【答案】分析:本題考查的知識點是簡單的線性規(guī)劃,我們可以先畫出足約束條件x-y+2=0的區(qū)域(直線SP),再根據(jù)的幾何意義是表示直線上的點到原點的距離,易求出第一空結論;而x,y又滿足y>4-x時,滿足約束條件的圖形為射線SP,表示射線上的點與原點連線的斜率,由圖結合直線斜率的求法,即可得到第二空的答案.
解答:解:,
當x=-y=-1時取等號;
畫出的可行域,
為射線SP(如圖),
表示射線上的點與原點連線的斜率,
由圖易得k∈(1,3).
故答案為:,(1,3).
點評:平面區(qū)域的最值問題是線性規(guī)劃問題中一類重要題型,在解題時,關鍵是正確地畫出平面區(qū)域,分析表達式的幾何意義,然后結合數(shù)形結合的思想,分析圖形,找出滿足條件的點的坐標,即可求出答案.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設x,y∈R,且滿足x2+y2=1,求x+y的最大值為( 。
A、
2
B、
3
C、2
D、1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設x,y∈R,且滿足x-y+2=0,則
x2+y2
的最小值為
2
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設x,y∈R+,且滿足4x+y=40,則lgx+lgy的最大值是
2
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設x,y∈R,且滿足
(x-2)3+2010(x-2)=-1
(y-
1
2
)3+2010(y-
1
2
)=1
,則x+y=
5
2
5
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設x,y∈R,且滿足
(x-2)3+2x+sin(x-2)=2
(y-2)3+2y+sin(y-2)=6
,則x+y=( 。
A、1B、2C、3D、4

查看答案和解析>>

同步練習冊答案