(08年黃岡中學(xué)二模文)甲、乙、丙三人組成一組,參加一個闖關(guān)游戲團(tuán)體賽.三人各自獨(dú)立闖關(guān),其中甲闖關(guān)成功的概率為,甲、乙都闖關(guān)成功的概率為,乙、丙都闖關(guān)成功的概率為.每人闖關(guān)成功記2分,三人得分之和記為小組團(tuán)體總分.

(I)求乙、丙各自闖關(guān)成功的概率;

(II)求團(tuán)體總分為4分的概率;

(III)若團(tuán)體總分不小于4分,則小組可參加復(fù)賽.求該小組參加復(fù)賽的概率.

解析:(I)設(shè)乙闖關(guān)成功的概率為,丙闖關(guān)成功的概率為           

因?yàn)橐冶?dú)立闖關(guān),根據(jù)獨(dú)立事件同時發(fā)生的概率公式得:

                                       

解得.                     

答:乙闖關(guān)成功的概率為,丙闖關(guān)成功的概率為.

(II)團(tuán)體總分為4分,即甲、乙、丙三人中恰有2人過關(guān),而另外一人沒過關(guān). 

設(shè)“團(tuán)體總分為4分”為事件A,                               

 則     

  答:團(tuán)體總分為4分的概率為.    

(III)團(tuán)體總分不小于4分, 即團(tuán)體總分為4分或6分,

 設(shè)“團(tuán)體總分不小于4分”為事件B,由(II)知團(tuán)體總分為4分的概率為,                                      

 團(tuán)體總分為6分, 即3人都闖關(guān)成功的概率為 

 所以參加復(fù)賽的概率為= 

         答:該小組參加復(fù)賽的概率為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(08年黃岡中學(xué)二模理)已知函數(shù),滿足:

①對任意,都有;

②對任意都有.

(I)試證明:上的單調(diào)增函數(shù);

(II)求;

(III)令,試證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年黃岡中學(xué)二模理)已知函數(shù),滿足:

①對任意,都有;

②對任意都有.

(I)試證明:上的單調(diào)增函數(shù);

(II)求;

(III)令,試證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年黃岡中學(xué)二模)函數(shù)關(guān)于直線對稱的函數(shù)為,又函數(shù)的導(dǎo)函數(shù)為,記

  (1)設(shè)曲線在點(diǎn)處的切線為,若與圓相切,求的值;

   (2)求函數(shù)的單調(diào)區(qū)間;

   (3)求函數(shù)在[0,1]上的最大值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年黃岡中學(xué)二模理)如圖,已知橢圓的右焦點(diǎn)為F,過F的直線(非x軸)交橢圓于M、N兩點(diǎn),右準(zhǔn)線x軸于點(diǎn)K,左頂點(diǎn)為A.

(1)求證:KF平分∠MKN;

(2)直線AM、AN分別交準(zhǔn)線于點(diǎn)P、Q,設(shè)直線MN的傾斜角為,試用表示線段PQ的長度|PQ|,并求|PQ|的最小值.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年黃岡中學(xué)二模理)    2008年北京奧運(yùn)會乒乓球比賽將產(chǎn)生男子單打、女子單打、男子團(tuán)體、女子團(tuán)體共四枚金牌,保守估計中國乒乓球男隊(duì)獲得每枚金牌的概率均為中國乒乓球女隊(duì)獲得每枚金牌的概率均為

   (I)求按此估計中國乒乓球女隊(duì)比中國乒乓球男隊(duì)多獲得一枚金牌的概率;

   (II)記中國乒乓球隊(duì)獲得金牌的枚數(shù)為ξ,求按此估計ξ的分布列和數(shù)學(xué)期望Eξ。(結(jié)果均用分?jǐn)?shù)表示)

查看答案和解析>>

同步練習(xí)冊答案