函數(shù)f(x)=-x3+x2+tx+t在(-1,1)上是增函數(shù),則t的取值范圍是( 。
A、t>5B、t<5
C、t≥5D、t≤5
考點:利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:函數(shù)f(x)=-x3+x2+tx+t在(-1,1)上是增函數(shù),所以會得到f′(x)在(-1,1)上應(yīng)是f′(x)>0,函數(shù)在端點處有定義,所以f′(-1)≥0,f(1)≥0,并且f(1)>f(-1),這樣會得到三個關(guān)于t的不等式,解不等式便能求出t的取值范圍.
解答: 解:f′(x)=-3x2+2x+t,由題意知,要使函數(shù)f(x)=-x3+x2+tx+t在(-1,1)上是增函數(shù),則t應(yīng)滿足:
f′(1)≥0
f′(-1)≥0
f(1)>f(-1)

即:
-3+2+ t≥0
-3-2+t≥0
-1+1+t+t>1+1-t+t
解得t≥5,故選C.
點評:本題用到的一個知識點是:如果一個函數(shù)在一個開區(qū)間上是單調(diào)函數(shù),并且函數(shù)在區(qū)間端點有定義,那么它在閉區(qū)間上也是單調(diào)函數(shù),并且單調(diào)性和開區(qū)間上一致.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知命題:“?x∈R,5x+3>m”為真命題,則m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線
x2
9
-
y2
4
=1的焦點坐標(biāo)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋擲紅、黃兩枚骰子,當(dāng)紅色骰子的點數(shù)為4或6時,兩顆骰子的點數(shù)之積大于20的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1左、右焦點分別為F1,F(xiàn)2,過點F2作與x軸垂直的直線與雙曲線一個交點為P,且∠PF1F2=
π
6
,則雙曲線的漸近線方程為( 。
A、y=±
2
2
x
B、y=±
2
x
C、y=±
1
2
x
D、y=±x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

5名運動員爭奪3項比賽冠軍(每項比賽無并列冠軍),獲得冠軍的可能種數(shù)為( 。
A、35
B、
C
3
5
C、
A
3
5
D、53

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

集合P={x,1},Q={y,1,2},其中x,y∈{1,2,3,4,5},則滿足條件P⊆Q的事件的概率為( 。
A、
1
2
B、
1
3
C、
1
4
D、
1
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

10件產(chǎn)品中有5件次品,從中不放回的抽取2次,每次抽1件,已知第一次抽出的是次品,則第二次抽出的是正品的概率(  )
A、
1
2
B、
2
5
C、
5
18
D、
5
9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

p:7是質(zhì)數(shù),q:8是12的約數(shù),則命題“p∨q”,“p∧q”的真假是( 。
A、真,真B、真,假
C、假,真D、假,假

查看答案和解析>>

同步練習(xí)冊答案