【題目】函數(shù) f(x)= 在[﹣2,3]上的最大值為2,則實數(shù)a的取值范圍是(
A.[ ln2,+∞ )
B.[0, ln2]
C.(﹣∞,0]
D.(﹣∞, ln2]

【答案】D
【解析】解:由題意,當x≤0時,f(x)=2x3+3x2+1,
可得f′(x)=6x2+6x,解得函數(shù)在[﹣1,0]上導數(shù)為負,函數(shù)為減函數(shù);
在(﹣∞,﹣1]上導數(shù)為正,函數(shù)為增函數(shù),
故函數(shù)在[﹣2,0]上的最大值為f(﹣1)=2;
故要使函數(shù)f(x)在[﹣2,2]上的最大值為2,
則當x=3時,e3a的值必須小于等于2,
即e3a≤2,
解得a∈(﹣∞, ln2].
故選:D.
【考點精析】利用函數(shù)的最值及其幾何意義對題目進行判斷即可得到答案,需要熟知利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(。┲;利用圖象求函數(shù)的最大(。┲;利用函數(shù)單調(diào)性的判斷函數(shù)的最大(。┲担

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)f(x)=ax2+bx(a,b為常數(shù),且a≠0),f(2)=0,且方程f(x)=x有等根.
(1)求f(x)的解析式
(2)是否存在常數(shù)m,n(m<n),使f(x)的定義域和值域分別是[m,n]和[2m,2n]?如存在,求出m,n的值;如不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,一動圓經(jīng)過點且與直線相切,設(shè)該動圓圓心的軌跡方程為曲線.

(Ⅰ)求曲線的方程;

(Ⅱ)設(shè)是曲線上的動點,點的橫坐標為,點軸上,的內(nèi)切圓的方程為,將表示成的函數(shù),并求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在三棱錐中,側(cè)面, 是全等的直角三角形, 是公共的斜邊且, ,另一側(cè)面是正三角形.

(1)求證:

(2)若在線段上存在一點,使與平面角,試求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在多面體中,正三角形所在平面與菱形所在的平面垂直, 平面,且.

(1)判斷直線平面的位置關(guān)系,并說明理由;

(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列各組函數(shù)中,表示同一函數(shù)的是(
A.f(x)=x+1,g(x)= ﹣1
B.f(x)=|x|,g(x)=( 2
C.f(x)=2log2x,g(x)=log2x2
D.f(x)=x,g(x)=log22x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知全集U=R,集合A={x|x≤1,或x≥3},集合B={x|k<x<2k+1},且(UA)∩B=,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義在(﹣1,1)上的函數(shù)f(x)是奇函數(shù),且函數(shù)f(x)在(﹣1,1)上是減函數(shù),則滿足f(1﹣a)+f(1﹣a2)<0的實數(shù)a的取值范圍是(
A.[0,1]
B.(﹣2,1)
C.[﹣2,1]
D.(0,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示是一個算法程序框圖,在集合, 中隨機抽取一個數(shù)值作為輸入,則輸出的的值落在區(qū)間內(nèi)的概率為

A. 0.8 B. 0.6 C. 0.5 D. 0.4

查看答案和解析>>

同步練習冊答案