如圖,為測得河對岸塔AB的高,先在河岸上選一點C,使在C塔底B的正東方向上,測得點A的仰角為60°,再由點C沿北偏東15°方向走10米到位置D,測得∠BDC=45°,則塔高AB的高度為


  1. A.
    10
  2. B.
    10數(shù)學(xué)公式
  3. C.
    10數(shù)學(xué)公式
  4. D.
    10數(shù)學(xué)公式
D
分析:先在△ABC中求出BC,再△BCD中利用正弦定理,即可求得結(jié)論.
解答:設(shè)塔高AB為x米,根據(jù)題意可知在△ABC中,∠ABC=90°,∠ACB=60°,AB=x,從而有BC=x,AC=x
在△BCD中,CD=10,∠BCD=60°+30°+15°=105°,∠BDC=45°,∠CBD=30°
由正弦定理可得,=
∴BC==10
x=10
∴x=
故塔高AB=
點評:本題考查了正弦定理在實際問題中的應(yīng)用,解決本題的關(guān)鍵是要把實際問題轉(zhuǎn)化為數(shù)學(xué)問題,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,為測得河對岸塔AB的高,先在河岸上選一點C,使C在塔底B的正東方向上,測得點A的仰角為60°,再由點C沿北偏東15°方向走10米到位置D,測得∠BDC=45°,則塔AB的高是
 
米.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,為測得河對岸塔AB的高,先在河岸上選一點C,使在C塔底B的正東方向上,測得點A的仰角為60°,再由點C沿北偏東15°方向走10米到位置D,測得∠BDC=45°,則塔高AB的高度為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,為測得河對岸塔AB的高,先在河岸上選一點C,使C在塔底B的正東方向上,測得點A的仰角為60°,再由點C東偏北60°方向走10米到位置D,測得∠ADB=45°,則塔AB的高度為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆江西省高三第三次月考理科數(shù)學(xué)試卷(解析版) 題型:填空題

如圖,為測得河對岸塔AB的高,先在河岸上選一點C,使C在塔底B的正東方向上,測得點A的仰角為60°,再由點C沿北偏東15°方向走10米到位置D,測得∠BDC=45°,則塔AB的高是___  _米.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年湖南師大附中?谥袑W(xué)高三(上)元月月考數(shù)學(xué)試卷(文科)(解析版) 題型:填空題

如圖,為測得河對岸塔AB的高,先在河岸上選一點C,使C在塔底B的正東方向上,測得點A的仰角為60°,再由點C沿北偏東15°方向走10米到位置D,測得∠BDC=45°,則塔AB的高是    米.

查看答案和解析>>

同步練習(xí)冊答案