熱力公司為某生活小區(qū)鋪設(shè)暖氣管道,為減少熱量損耗,管道外表需要覆蓋保溫層,經(jīng)測(cè)算要覆蓋可使用20年的保溫層,每厘米厚的保溫層材料成本為2萬元,小區(qū)每年的熱量損耗費(fèi)用w(單位:萬元)與保溫層厚度x(單位:cm)滿足關(guān)系:w(x)=
k
2x+1
(0≤x≤10).若不加保溫層,每年熱量損耗費(fèi)用5萬元,設(shè)保溫層費(fèi)用與20年的熱量損耗費(fèi)用之和為f(x).
(1)求k的值及f(x)的表達(dá)式;
(2)問保溫層多厚時(shí),總費(fèi)用f(x)最小,并求最小值.
(1)由題意知:W(0)=5,?K=5,?f(x)=2x+
100
2x+1
(0≤x≤10).
(2)∵f(x)=(2x+1)+
100
2x+1
-1≥20-1=19,當(dāng)且僅當(dāng)2x+1=
100
2x+1

即x=4.5時(shí)等號(hào)成立,
∴當(dāng)保溫層為4.5cm時(shí),總費(fèi)用最小且為19萬元.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

熱力公司為某生活小區(qū)鋪設(shè)暖氣管道,為減少熱量損耗,管道外表需要覆蓋保溫層,經(jīng)測(cè)算要覆蓋可使用20年的保溫層,每厘米厚的保溫層材料成本為2萬元,小區(qū)每年的熱量損耗費(fèi)用w(單位:萬元)與保溫層厚度x(單位:cm)滿足關(guān)系:w(x)=
k2x+1
(0≤x≤10).若不加保溫層,每年熱量損耗費(fèi)用5萬元,設(shè)保溫層費(fèi)用與20年的熱量損耗費(fèi)用之和為f(x).
(1)求k的值及f(x)的表達(dá)式;
(2)問保溫層多厚時(shí),總費(fèi)用f(x)最小,并求最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012屆山東省高三上學(xué)期期末考試文科數(shù)學(xué) 題型:解答題

(本小題滿分12分)熱力公司為某生活小區(qū)鋪設(shè)暖氣管道,為減少熱量損耗,管道外表需要覆蓋保溫層。經(jīng)測(cè)算要覆蓋可使用20年的保溫層,每厘米厚的保溫層材料成本為2萬元,小區(qū)每年的氣量損耗用(單位:萬元)與保溫層厚度(單位:)滿足關(guān)系:若不加保溫層,每年熱量損耗費(fèi)用為5萬元。設(shè)保溫費(fèi)用與20年的熱量損耗費(fèi)用之和為

(1)求的值及的表達(dá)式;

(2)問保溫層多厚時(shí),總費(fèi)用最小,并求最小值。

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

熱力公司為某生活小區(qū)鋪設(shè)暖氣管道,為減少熱量損耗,管道外表需要覆蓋保溫層,經(jīng)測(cè)算要覆蓋可使用20年的保溫層,每厘米厚的保溫層材料成本為2萬元,小區(qū)每年的熱量損耗費(fèi)用w(單位:萬元)與保溫層厚度x(單位:cm)滿足關(guān)系:w(x)=數(shù)學(xué)公式(0≤x≤10).若不加保溫層,每年熱量損耗費(fèi)用5萬元,設(shè)保溫層費(fèi)用與20年的熱量損耗費(fèi)用之和為f(x).
(1)求k的值及f(x)的表達(dá)式;
(2)問保溫層多厚時(shí),總費(fèi)用f(x)最小,并求最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:期末題 題型:解答題

熱力公司為某生活小區(qū)鋪設(shè)暖氣管道,為減少熱量損耗,管道外表需要覆蓋保溫層,經(jīng)測(cè)算要覆蓋可使用20年的保溫層,每厘米厚的保溫層材料成本為2萬元,小區(qū)每年的熱量損耗費(fèi)用w(單位:萬元)與保溫層厚度x(單位:cm)滿足關(guān)系:w(x)= (0≤x≤10).若不加保溫層,每年熱量損耗費(fèi)用5萬元,設(shè)保溫層費(fèi)用與20年的熱量損耗費(fèi)用之和為f(x).
(1)求k的值及f(x)的表達(dá)式;
(2)問保溫層多厚時(shí),總費(fèi)用f(x)最小,并求最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案