(2012•湛江一模)甲、乙兩人從4門課程中各選修2門,則甲、乙所選的課程中至少有1門不相同的選法共有( 。
分析:“至少1門不同”包括兩種情況,兩門均不同和有且只有1門相同,再利用分步計數(shù)原理,即可求得結(jié)論.
解答:解:甲、乙所選的課程中至少有1門不相同的選法可以分為兩類:
1、甲、乙所選的課程中2門均不相同,甲先從4門中任選2門,乙選取剩下的2門,有C42C22=6種.
2、甲.乙所選的課程中有且只有1門相同,分為2步:①從4門中先任選一門作為相同的課程,有C41=4種選法;②甲從剩余的3門中任選1門乙從最后剩余的2門中任選1門有C31C21=6種選法,由分步計數(shù)原理此時共有C41C31C21=24種.
綜上,由分類計數(shù)原理,甲、所選的課程中至少有1門不相同的選法共有6+24=30種.
故選C.
點評:本題考查排列組合知識,合理分類、正確分步是解題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2012•湛江一模)已知全集U={x|-3<x<2},集合A={x|x2<4},則?UA=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•湛江一模)(坐標系與參數(shù)方程選做題)已知直線l的方程為
x=t-1
y=t+1
(t為參數(shù)),以坐標原點為極點,x軸正方向為極軸的極坐標中,圓的極坐標方程為ρ=2,則l與該圓相交所得弦的弦長為
2
2
2
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•湛江一模)已知i是虛數(shù)單位,則復(fù)數(shù)
1+i1-i
=
i
i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•湛江一模)對兩條不相交的空間直線a和b,則( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•湛江一模)三棱錐P-ABC中,PA=AC=BC=2,PA⊥平面ABC,BC⊥AC,D、E分別是PC、PB的中點.
(1)求證:DE∥平面ABC;
(2 )求證:AD⊥平面PBC;
(3)求四棱錐A-BCDE的體積.

查看答案和解析>>

同步練習冊答案