下列4個(gè)命題:
①已知函數(shù)y=2sin(x+ϕ)(0<ϕ<π)的圖象如圖所示,則φ=π;
②在△ABC中,∠A>∠B是sinA>sinB的充要條件;
③定義域?yàn)镽的奇函數(shù)f(x)滿足f(1+x)=-f(x),則f(x)的圖象關(guān)于點(diǎn)對(duì)稱(chēng);
④對(duì)于函數(shù)f(x)=x2+mx+n,若f(a)>0,f(b)>0,則f(x)在(a,b)內(nèi)至多有一個(gè)零點(diǎn);其中正確命題序號(hào)   
【答案】分析:由圖可知,則φ=,故可排除①;利用正弦定理可判斷②;由f(1+x)=-f(x)可得f(x)=f(1-x),圖象關(guān)于直線x=對(duì)稱(chēng),可排除③;④f(x))=x2+mx+n,若f(a)>0,f(b)>0,則f(x)在(a,b)內(nèi)至多有一個(gè)零點(diǎn),錯(cuò)誤.
解答:解:由圖可知,函數(shù)y=2sin(x+ϕ)(0<ϕ<π)的周期T=2π,由f(0)=1得:sinϕ=,左移單位不超過(guò),0<ϕ<π,故φ=,可排除①;
在△ABC中,∠A>∠B?a>b(a,b為∠A與∠B的對(duì)邊)?2RsinA>2RsinB?sinA>sinB(2R為其外接圓的直徑),即在△ABC中,∠A>∠B是sinA>sinB的充要條件;②正確.
對(duì)于③,定義域?yàn)镽的奇函數(shù)f(x)滿足f(1+x)=-f(x),即f(1+x)=f(-x),
∴f(1-x)=f(x),
∴f(x)的圖象關(guān)于直線x=對(duì)稱(chēng),故③錯(cuò)誤;
對(duì)于④,函數(shù)f(x)=x2+mx+n,若f(a)>0,f(b)>0,則f(x)在(a,b)內(nèi)可以有兩個(gè)零點(diǎn);故④錯(cuò)誤.
綜上所述,正確命題序號(hào)是②.
故答案為:②.
點(diǎn)評(píng):本題考查由y=Asin(ωx+φ)的部分圖象確定其解析式,考察正弦定理的應(yīng)用及函數(shù)的零點(diǎn),突出考查學(xué)生綜合分析問(wèn)題、解決問(wèn)題的能力,屬于難題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

10、已知函數(shù)f(x)=x3+bx2+cx+d(b,c,d為常數(shù)),當(dāng)k∈(-∞,0)∪(4,+∞)時(shí),f(x)-k=0只有一個(gè)實(shí)根;當(dāng)k∈(0,4)時(shí),f(x)-k=0只有3個(gè)相異實(shí)根,現(xiàn)給出下列4個(gè)命題:
①f(x)=4和f′(x)=0有一個(gè)相同的實(shí)根;
②f(x)=0和f′(x)=0有一個(gè)相同的實(shí)根;
③f(x)+3=0的任一實(shí)根大于f(x)-1=0的任一實(shí)根;
④f(x)+5=0的任一實(shí)根小于f(x)-2=0的任一實(shí)根.
其中正確命題的序號(hào)是
①②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

6、已知m,n是兩條不同的直線,α,β是兩個(gè)不同的平面,下列4個(gè)命題中正確的個(gè)數(shù)為( 。
①若m∥α,n?α,則m∥n
②若α⊥β,m⊥α,n⊥β,則m⊥n③若m?α,n?β且m⊥n,則α⊥β
④若m,n是異面直線,m?α,n?β,m∥β,則n∥α

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知下列4個(gè)命題:
①若f(x)為減函數(shù),則-f(x)為增函數(shù);
②若f(x)為增函數(shù),則函數(shù)g(x)=
1
f(x)
在其定義域內(nèi)為減函數(shù);
③若函數(shù)f(x)=
(2-m)x+2m(x<1)
(m-1)|x+1|(x≥1)
在R上是增函數(shù),則a的取值范圍是1<m<2;
④函數(shù)f(x),g(x)在區(qū)間[-a,a](a>0)上都是奇函數(shù),則f(x)•g(x)在區(qū)間[-a,a](a>0)是偶函數(shù).
其中正確命題的序號(hào)是
①,④
①,④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a,b是兩條直線,α,β是兩個(gè)平面,有下列4個(gè)命題:
①若a∥b,b?α,則a∥α;            ②若a⊥b,a⊥α,b?α,則b∥α
③若α⊥β,a⊥α,b⊥β,則a⊥b;      ④若a,b異面,a?α,b?β,a∥β,則α∥β.
其中正確命題的序號(hào)是
②③④
②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年廣東省汕頭市高三五月高考前模擬理科數(shù)學(xué)試卷(解析版) 題型:填空題

給出的下列四個(gè)命題中:

①已知隨機(jī)變量,,

②“”是“直線與直線相互垂直”的充要條件;

③設(shè)圓與坐標(biāo)軸有4個(gè)交點(diǎn),分別為,則;

④關(guān)于x的不等式的解集為R,則

其中所有真命題的序號(hào)是_______.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案