5.頂點(diǎn)在原點(diǎn),坐標(biāo)軸為對稱軸的拋物線過點(diǎn)(-2,3),則它的方程是( 。
A.x2=-$\frac{9}{2}$y或y2=$\frac{4}{3}$xB.x2=$\frac{4}{3}$y
C.x2=$\frac{4}{3}$y 或 y2=-$\frac{9}{2}$xD.y2=-$\frac{9}{2}$x

分析 設(shè)出拋物線方程,利用已知條件化簡求解即可.

解答 解:拋物線的焦點(diǎn)坐標(biāo)在x軸時,設(shè)拋物線方程為:y2=2px,拋物線過點(diǎn)(-2,3),
可得p=$-\frac{9}{4}$,此時的拋物線方程為:y2=-$\frac{9}{2}$x.
當(dāng)拋物線的焦點(diǎn)坐標(biāo)在y軸時,設(shè)拋物線方程為:x2=2py,拋物線過點(diǎn)(-2,3),
可得p=$\frac{2}{3}$,此時拋物線方程為:x2=$\frac{4}{3}$y.
故選:A.

點(diǎn)評 本題考查拋物線方程的求法,拋物線的簡單性質(zhì)的應(yīng)用,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,在直三棱柱ABC-A1B1C1中,AB⊥AC,AB=AC,點(diǎn)E是BC上一點(diǎn),且平面BB1C1C⊥平面AEB1
(1)求證:AE⊥BC;
(2)求證:A1C∥平面AEB1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.函數(shù)$f(x)=x+2cosx,x∈[{0,\frac{π}{2}}]$的最大值為$\frac{π}{6}$+$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.下列對概率的說法正確的是(  )
A.不可能事件不可能有概率B.任何事件都有概率
C.隨機(jī)事件不全有概率D.必然事件沒有概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.根據(jù)下列算法語句,

當(dāng)輸入x為70時,輸出y的值為31.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知集合A={x|-1<x<2},B={x|x2+2x≤0},則A∩B=( 。
A.{x|0<x<2}B.{x|0≤x<2}C.{x|-1<x<0}D.{x|-1<x≤0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=|x-2|-|x-5|.
(Ⅰ)求函數(shù)f(x)的值域;
(Ⅱ)不等式f(x)+2m-1≥0對于任意的x∈R都成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知等差數(shù)列{an}中,a1=-1,d=4,則它的通項公式是( 。
A.an=-4n+3B.an=-4n-3C.an=4n-5D.an=4n+3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)$\overrightarrow a,\overrightarrow b,\overrightarrow c$為非零向量且相互不共線,下面四個命題:其中正確的是( 。
$(1)({\overrightarrow a•\overrightarrow b})•\overrightarrow c-({\overrightarrow a•\overrightarrow c})•\overrightarrow b=0$;            
$(2)|{\overrightarrow a}|-|{\overrightarrow b}|<|{\overrightarrow a-\overrightarrow b}|$;
$(3)({\overrightarrow b•\overrightarrow c})•\overrightarrow a-({\overrightarrow a•\overrightarrow c})•\overrightarrow b不與\overrightarrow c垂直$;    
 $(4)({3\overrightarrow a+2\overrightarrow b})•({3\overrightarrow a-2\overrightarrow b})=9{|{\overrightarrow a}|^2}-4{|{\overrightarrow b}|^2}$.
A.(1)(2)B.(2)(3)C.(3)(4)D.(2)(4)

查看答案和解析>>

同步練習(xí)冊答案