設(shè)P為直線3x+4y+3=0上的動(dòng)點(diǎn),過(guò)點(diǎn)P作圓C:x2+y2-2x-2y+1=0的兩條切線,切點(diǎn)分別為A,B,則四邊形PACB的面積的最小值為( )
A.1
B.
C.
D.
【答案】分析:由圓的方程為求得圓心C(1,1)、半徑r為:1,由“若四邊形面積最小,則圓心與點(diǎn)P的距離最小時(shí),即距離為圓心到直線的距離時(shí),切線長(zhǎng)PA,PB最小”,最后將四邊形轉(zhuǎn)化為兩個(gè)直角三角形面積求解.
解答:解:∵圓的方程為:x2+y2-2x-2y+1=0
∴圓心C(1,1)、半徑r為:1
根據(jù)題意,若四邊形面積最小
當(dāng)圓心與點(diǎn)P的距離最小時(shí),距離為圓心到直線的距離時(shí),
切線長(zhǎng)PA,PB最小
圓心到直線的距離為d=2
∴|PA|=|PB|=

故選D.
點(diǎn)評(píng):本題主要考查直線與圓的位置關(guān)系,主要涉及了構(gòu)造四邊形及其面積的求法,同時(shí),還考查了轉(zhuǎn)化思想.此題屬中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)P為直線3x+4y+3=0上的動(dòng)點(diǎn),過(guò)點(diǎn)P作圓C:x2+y2-2x-2y+1=0的兩條切線,切點(diǎn)分別為A,B,則四邊形PACB的面積的最小值為( 。
A、1
B、
3
2
C、2
3
D、
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•保定一模)設(shè)P為直線3x+4y+3=0上的動(dòng)點(diǎn),過(guò)點(diǎn)P作圓C:x2+y2-2x-2y+1=0的兩條切線,切點(diǎn)分別為A,B,則四邊形PACB的面積最小時(shí)∠P=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年河北省唐山一中高二(上)期中數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

設(shè)P為直線3x+4y+3=0上的動(dòng)點(diǎn),過(guò)點(diǎn)P作圓C:x2+y2-2x-2y+1=0的兩條切線,切點(diǎn)分別為A,B,則四邊形PACB的面積的最小值為( )
A.1
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年云南省文山州硯山一中高三(上)第二次月考數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

設(shè)P為直線3x+4y+3=0上的動(dòng)點(diǎn),過(guò)點(diǎn)P作圓C:x2+y2-2x-2y+1=0的兩條切線,切點(diǎn)分別為A,B,則四邊形PACB的面積的最小值為( )
A.1
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案