在正方體ABCD-A1B1C1D1中,點Q是棱DD1上的動點,則過A、Q、B1三點的截面圖形的形狀為
 
考點:平行投影及平行投影作圖法
專題:計算題,空間位置關系與距離
分析:由于AB1∥平面C1D,點Q是棱DD1上的動點,故可得過A、Q、B1三點的截面圖形的形狀.
解答:解:由于AB1∥平面C1D,點Q是棱DD1上的動點,
∴過A、Q、B1三點的截面圖形的形狀為梯形.
故答案為:梯形.
點評:本題考查線面平行的判定,考查學生分析解決問題的能力,比較基礎.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

求值:cos
7
-cos
7
-cos
π
7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線L經(jīng)過點P(-2,5),且斜率為-
3
4
,則直線L的方程為( 。
A、3x+4y-14=0
B、3x-4y+14=0
C、4x+3y-14=0
D、4x-3y+14=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在(0,2π)上,若tanθ>sinθ,則θ的范圍是( 。
A、(0,
π
2
)∪(
π
2
,π)
B、(
π
2
,π)∪(π,
2
C、(0,
π
2
)∪(π,
2
D、(
π
2
,π)∪(
2
,2π)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知cos(α+
π
6
)-sinα=
4
3
5
,則sin(α+
11π
6
)的值是( 。
A、-
2
3
5
B、-
4
5
C、
2
3
5
D、
4
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知y=sin(
1
2
x+
π
6

(1)求周期T;
(2)利用“五點法”畫出函數(shù)y=sin(
1
2
x+
π
6
)在長度為一個周期的閉區(qū)間的簡圖;
列表:
 
1
2
x+
π
6
         
 x          
 y          
(3)并說明該函數(shù)圖象可由y=sinx(x∈R)的圖象經(jīng)過怎樣變換得到的.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ<
π
2
|)的圖象與y軸交于點(0,
3
2
),它在y軸右側的第一個最大值點和最小值點分別為(x0,3),(x0+2π,-3).

(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)用五點法作出函數(shù)在長度為一個周期的閉區(qū)間上的圖象,并說明它是由y=sinx的圖象依次經(jīng)過哪些變換而得到的?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

直線經(jīng)過M(-1,1)斜率為2,則這條直線的方程是(  )
A、y+1=2(x-1)
B、y=2(x-1)+1
C、y=2x+3
D、y=2(x+1)-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

tan22.5°
1-tan222.5°
的值是( 。
A、
1
2
B、-
1
2
C、1
D、-1

查看答案和解析>>

同步練習冊答案