【題目】國慶70周年慶典磅礴而又歡快的場(chǎng)景,仍歷歷在目.已知慶典中某省的游行花車需要用到某類花卉,而該類花卉有甲、乙兩個(gè)品種,花車的設(shè)計(jì)團(tuán)隊(duì)對(duì)這兩個(gè)品種進(jìn)行了檢測(cè).現(xiàn)從兩個(gè)品種中各抽測(cè)了10株的高度,得到如下莖葉圖.下列描述正確的是(

A.甲品種的平均高度大于乙品種的平均高度,且甲品種比乙品種長(zhǎng)的整齊

B.甲品種的平均高度大于乙品種的平均高度,但乙品種比甲品種長(zhǎng)的整齊

C.乙品種的平均高度大于甲品種的平均高度,且乙品種比甲品種長(zhǎng)的整齊

D.乙品種的平均高度大于甲品種的平均高度,但甲品種比乙品種長(zhǎng)的整齊

【答案】D

【解析】

根據(jù)莖葉圖所反映出數(shù)據(jù)的分布情況進(jìn)行判斷即可.

通過莖葉圖數(shù)據(jù)可知:

甲品種的平均高度為:;

乙品種的平均高度為:,所以乙品種的平均高度大于甲品種的平均高度,但是乙品種的10株高度在分散,沒有甲品種10株的高度集中,都集中在25左右,故乙品種的平均高度大于甲品種的平均高度,但甲品種比乙品種長(zhǎng)的整齊.

故選:D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】三角形面積為S=(a+b+c)r,a,b,c為三角形三邊長(zhǎng),r為三角形內(nèi)切圓半徑,利用類比推理,可以得出四面體的體積為 ( )

A. V=abc B. V=Sh

C. V=(ab+bc+ac)·h(h為四面體的高) D. V=(S1+S2+S3+S4)·r(其中S1,S2,S3,S4分別為四面體四個(gè)面的面積,r為四面體內(nèi)切球的半徑,設(shè)四面體的內(nèi)切球的球心為O,則球心O到四個(gè)面的距離都是r)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直三棱柱, 的中點(diǎn).

1證明 平面;

2, ,求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C的離心率為,且過點(diǎn)

求橢圓的標(biāo)準(zhǔn)方程;

設(shè)直線l經(jīng)過點(diǎn)且與橢圓C交于不同的兩點(diǎn)M,N試問:在x軸上是否存在點(diǎn)Q,使得直線QM與直線QN的斜率的和為定值?若存在,求出點(diǎn)Q的坐標(biāo)及定值,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)坐標(biāo)系中,過點(diǎn)P1,0)的直線l的參數(shù)方程為為參數(shù), ),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,已知頂點(diǎn)在極軸上,開口向右的拋物線C經(jīng)過極坐標(biāo)為(2, )的點(diǎn)Q.

1)求C的極坐標(biāo)方程;

2)若lC交于AB兩點(diǎn),且|PA|=2|PB|,求tan的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢園C +=1(a>b>0)的左、右焦點(diǎn)分別為F1,F2.且橢圓C過點(diǎn)(,-),離心率e=;點(diǎn)P在橢圓C 上,延長(zhǎng)PF1與橢圓C交于點(diǎn)Q,點(diǎn)RPF2中點(diǎn).

(I )求橢圓C的方程;

(II )O是坐標(biāo)原點(diǎn),記QF1OPF1R的面積之和為S,S的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修44:坐標(biāo)系與參數(shù)方程]已知直線l過原點(diǎn)且傾斜角為, ,以原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線C 的極坐標(biāo)方程為psin =4cos.

(I)寫出直線l的極坐標(biāo)方程和曲線C 的直角坐標(biāo)方程;

()已知直線l過原點(diǎn)且與直線l相互垂直,lC=-M,lC=N,其中M,N不與原點(diǎn)重合,求OMN 面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若存在實(shí)常數(shù),使得函數(shù)對(duì)其公共定義域上的任意實(shí)數(shù)都滿足: 恒成立,則稱此直線的“隔離直線”,已知函數(shù), ,有下列命題:

內(nèi)單調(diào)遞增;

之間存在“隔離直線”,且的最小值為-4;

之間存在“隔離直線”,且的取值范圍是;

之間存在唯一的“隔離直線”.

其中真命題的個(gè)數(shù)有( )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足a13,a2,且2an+13anan-1.

1)求證:數(shù)列{an+1an}是等比數(shù)列,并求數(shù)列{an}通項(xiàng)公式;

2)求數(shù)列{nan}的前n項(xiàng)和為Tn,若對(duì)任意的正整數(shù)n恒成立,求k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案