已知函數(shù)(a為實常數(shù)).
(1)當(dāng)a=0時,求函數(shù)f(x)的最小值;
(2)若函數(shù)f(x)在[2,+∞)上是單調(diào)函數(shù),求a的取值范圍.
【答案】分析:(1)利用導(dǎo)數(shù),確定函數(shù)的單調(diào)性,從而確定函數(shù)f(x)的最小值;
(2)先求導(dǎo)函數(shù),再分別考慮導(dǎo)數(shù)大于0與小于0,分類討論即可.當(dāng)a≥0時,ax2+x-1在[2,+∞)上恒大于零,即f'(x)>0,符合要求;當(dāng)a<0時,令g(x)=ax2+x-1,g (x)在[2,+∞)上只能恒小于零
解答:解:(1)a=0時,…..(2分)
當(dāng)0<x<1時f'(x)<0,
當(dāng)x>1時f'(x)>0,…..(5分)
∴f(x)min=f(1)=1….(7分)
(2)
當(dāng)a≥0時,ax2+x-1在[2,+∞)上恒大于零,即f'(x)>0,符合要求;…(10分)
當(dāng)a<0時,令g(x)=ax2+x-1,g (x)在[2,+∞)上只能恒小于零
故△=1+4a≤0或,解得:a≤
∴a的取值范圍是…(14分)
點評:本題以函數(shù)為載體,考查導(dǎo)函數(shù),考查函數(shù)的單調(diào)性,注意分類討論.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省溫州市蒼南中學(xué)高三(上)期中數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知函數(shù)(a為實常數(shù)).
(Ⅰ)當(dāng)a=1時,求函數(shù)ϕ(x)=f(x)-g(x)在定義域上的最小值;
(Ⅱ)若方程e2f(x)=g(x)在區(qū)間上有解,求實數(shù)a的取值范圍;
(Ⅲ)若數(shù)列{an}的通項公式為,它的前n項和為Sn,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省溫州市蒼南中學(xué)高三(上)期中數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知函數(shù)(a為實常數(shù)).
(Ⅰ)當(dāng)a=1時,求函數(shù)ϕ(x)=f(x)-g(x)在定義域上的最小值;
(Ⅱ)若方程e2f(x)=g(x)在區(qū)間上有解,求實數(shù)a的取值范圍;
(Ⅲ)若數(shù)列{an}的通項公式為,它的前n項和為Sn,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江西省南昌二中高三(上)第二次月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知函數(shù)(a為實常數(shù)).
(Ⅰ)當(dāng)a=1時,求函數(shù)g(x)=f(x)-2x的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)f(x)在區(qū)間(0,2)上無極值,求a的取值范圍;
(Ⅲ)已知n∈N*且n≥3,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江西省南昌三中高三(上)第三次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知函數(shù)(a為實常數(shù)).
(Ⅰ)當(dāng)a=1時,求函數(shù)g(x)=f(x)-2x的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)f(x)在區(qū)間(0,2)上無極值,求a的取值范圍;
(Ⅲ)已知n∈N*且n≥3,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年安徽省阜陽市潁上一中高考數(shù)學(xué)三模試卷(理科)(解析版) 題型:解答題

已知函數(shù)(a為實常數(shù)).
(Ⅰ)當(dāng)a=1時,求函數(shù)g(x)=f(x)-2x的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)f(x)在區(qū)間(0,2)上無極值,求a的取值范圍;
(Ⅲ)已知n∈N*且n≥3,求證:

查看答案和解析>>

同步練習(xí)冊答案