如圖是一個幾何體的三視圖(單位:cm)求這個幾何體的表面積及體積;
考點:由三視圖求面積、體積
專題:計算題,空間位置關系與距離
分析:幾何體可看成是正方體AC1及直三棱柱B1C1Q-A1D1P的組合體,求出底面面積,然后求出體積即可.
解答: 解:幾何體的直觀圖如圖所示.
幾何體可看成是正方體AC1及直三棱柱B1C1Q-A1D1P的組合體.
由PA1=PD1=
2
,A1D1=AD=2,可得PA1⊥PD1
故所求幾何體的表面積
S=5×22+2×
1
2
×2×1+2×
2
×2
=22+4
2
(cm2),
所求幾何體的體積V=23+
1
2
×(
2
2×2=10(cm3).
點評:本題考查三視圖復原幾何體,畫出中逐步按照三視圖的作法復原,考查空間想象能力,邏輯推理能力,計算能力,轉(zhuǎn)化思想,是中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

將全體正整數(shù)排成一個三角形數(shù)陣:
     1
   2   3
  4   5   6
7   8   9  10

按照以上排列的規(guī)律,第8行從左向右的第5個數(shù)為( 。
A、30B、31C、32D、33

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1,x>1
1-x2
,-1≤x≤1
|x|,x<-1
,求f(3)+f(-3)f(
1
3
)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

雙曲線
x2
4
-
y2
16
=1的漸近線方程為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
a
=(2cosα,2sinα),
b
=(cosβ,sinβ),0<α<β<2π.
(1)若
a
b
,求|
a
-2
b
|的值;
(2)設
c
=(2,0),若
a
+2
b
=
c
,求cos(α-β)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足a1=1,an=
4an-1
kan-1+1
(n≥2).
(1)求數(shù)列{an}的通項公式;
(2)當1<k<3時,證明不等式:a1+a2+…+an
3n-8k
k

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
-x-1,(x<-2)
x+3,(-2≤x≤
1
2
)
5x+1,(x>
1
2
)
(x∈R),求函數(shù)f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,已知△AOB中,點C與點B關于點A對稱,
OD
=2
DB
,DC和OA交于點E,設O
A
=
a
OB
=
b

(1)用
a
b
表示向量
OC
,
DC

(2)若
OE
=
λOA
,求實數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x-alnx,g(x)=
lnx
x

(Ⅰ) 若函數(shù)f(x)存在不大于0的最小值,求實數(shù)a的取值范圍;
(Ⅱ)設x=1是函數(shù)f(x)的極小值點.
(i)若函數(shù)f(x)與函數(shù)g(x)的圖象分別在直線y=kx的兩側,求k的取值范圍;
(ii) 若M(x1,y1),N(x2,y2)(0<x1<x2)是f(x)圖象上的兩點,且存在實x0∈(0,+∞)
使得f′(x0)=
f(x2)-f(x1)
x2-x1
,證明:x1<x0<x2

查看答案和解析>>

同步練習冊答案