精英家教網 > 高中數學 > 題目詳情

已知直線與平面, 下列命題正確的是

A.  ,則

B.  ,則

C.  ,則

D.,  ,則

 

【答案】

D

【解析】

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

在平面直角坐標系xoy中,已知直線l:8x+6y+1=0,圓C1:x2+y2+8x-2y+13=0,圓C2:x2+y2+8tx-8y+16t+12=0.
(1)當t=-1時,試判斷圓C1與圓C2的位置關系,并說明理由;
(2)若圓C1與圓C2關于直線l對稱,求t的值;
(3)在(2)的條件下,若P(a,b)為平面上的點,是否存在過點P的無窮多對互相垂直的直線l1和l2,它們分別與圓C1與圓C2相交,且直線l1被圓C1截得的弦長與直線l2被圓C2截得的弦長相等,若存在,求點P的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

本題設有(1)、(2)、(3)三個選考題,每題7分,請考生任選2題作答,滿分14分
(1)選修4-2:矩陣與變換
變換T是將平面上每個點M(x,y)的橫坐標乘2,縱坐標乘4,變到點M′(2x,4y).
(Ⅰ)求變換T的矩陣;
(Ⅱ)圓C:x2+y2=1在變換T的作用下變成了什么圖形?
(2)選修4-4:坐標系與參數方程
已知極點與原點重合,極軸與x軸的正半軸重合.若曲線C1的極坐標方程為:5ρ2-3ρ2cos2θ-8=0,直線?的參數方程為:
x=1-
3
t
y=t
(t為參數).
(Ⅰ)求曲線C1的直角坐標方程;
(Ⅱ)直線?上有一定點P(1,0),曲線C1與?交于M,N兩點,求|PM|.|PN|的值.
(3)選修4-5:不等式選講
已知a,b,c為實數,且a+b+c+2-2m=0,a2+
1
4
b2+
1
9
c2
+m-1=0.
(Ⅰ)求證:a2+
1
4
b2+
1
9
c2
(a+b+c)2
14
;
(Ⅱ)求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

本題有(1)、(2)、(3)三個選答題,每題7分,請考生任選2題作答,滿分14分.如果多作,則按所做的前兩題計分.作答時,先用2B鉛筆在答題卡上把所選題目對應的題號涂黑,并將選題號填入括號中.
(1)選修4一2:矩陣與變換
設矩陣M所對應的變換是把坐標平面上的點的橫坐標伸長到2倍,縱坐標伸長到3倍的伸縮變換.
(Ⅰ)求矩陣M的特征值及相應的特征向量;
(Ⅱ)求逆矩陣M-1以及橢圓
x2
4
+
y2
9
=1
在M-1的作用下的新曲線的方程.
(2)選修4一4:坐標系與參數方程
已知直線C1
x=1+tcosα
y=tsinα
(t為參數),C2
x=cosθ
y=sinθ
(θ為參數).
(Ⅰ)當α=
π
3
時,求C1與C2的交點坐標;
(Ⅱ)過坐標原點O做C1的垂線,垂足為A,P為OA中點,當α變化時,求P點的軌跡的參數方程.
(3)選修4一5:不等式選講
已知a,b,c均為正實數,且a+b+c=1.求
4a+1
+
4b+1
+
4c+1
的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

選修4—2:矩陣與變換

已知矩陣,.在平面直角坐標系中,設直線在矩陣對應的變換作用下得到曲線F,求曲線F的方程.

查看答案和解析>>

科目:高中數學 來源:2011-2012學年安徽省望江縣高三第一次月考理科數學 題型:解答題

(本小題滿分13分)

如圖,圓柱的高為2,底面半徑為3,AE、DF是圓柱的兩條母線,B、C是下底面圓周上的兩點,已知四邊形ABCD是正方形。

(1)求證:;

(2)求正方形ABCD的邊長;

(3)求直線與平面所成角的正弦值。

 

 

 

查看答案和解析>>

同步練習冊答案