【題目】已知非零向量 , , , 滿足 =2 ﹣ , =k + ,給出以下結(jié)論:
①若 與 不共線, 與 共線,則k=﹣2;
②若 與 不共線, 與 共線,則k=2;
③存在實(shí)數(shù)k,使得 與 不共線, 與 共線;
④不存在實(shí)數(shù)k,使得 與 不共線, 與 共線.
其中正確結(jié)論的個(gè)數(shù)是( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
【答案】B
【解析】解:非零向量 , , , 滿足 =2 ﹣ , =k + ,
與 不共線, 與 共線,可得:λ = ,即:2λ=k,﹣λ=1,解得k=﹣2.
所以①正確,②錯(cuò)誤;
與 共線;
可得: =m , =2 ﹣ =(m﹣1) ,
=k + =(km+1) ,
可得 與 共線,
所以③錯(cuò)誤,④正確.
故選:B.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用命題的真假判斷與應(yīng)用的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握兩個(gè)命題互為逆否命題,它們有相同的真假性;兩個(gè)命題為互逆命題或互否命題,它們的真假性沒(méi)有關(guān)系.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù), ,其中, , 為自然對(duì)數(shù)的底數(shù).
(Ⅰ)若和在區(qū)間內(nèi)具有相同的單調(diào)性,求實(shí)數(shù)的取值范圍;
(Ⅱ)若,且函數(shù)的最小值為,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義:在數(shù)列{an}中,若a ﹣a =p(n≥2,n∈N* , p為常數(shù)),則稱(chēng)數(shù)列{an}為等方差數(shù)列,下列判斷:
①若{an}是“等方差數(shù)列”,則數(shù)列{an2}是等差數(shù)列;
②{(﹣1)n}是“等方差數(shù)列”;
③若{an}是“等方差數(shù)列”,則數(shù)列{akn}(k∈N* , k為常數(shù))不可能還是“等方差數(shù)列”;
④若{an}既是“等方差數(shù)列”,又是等差數(shù)列,則該數(shù)列是常數(shù)列.
其中正確的結(jié)論是 . (寫(xiě)出所有正確結(jié)論的編號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在幾何體中,平面平面,四邊形為菱形,且, , ∥, 為中點(diǎn).
(Ⅰ)求證: ∥平面;
(Ⅱ)求直線與平面所成角的正弦值;
(Ⅲ)在棱上是否存在點(diǎn),使 ? 若存在,求的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】國(guó)內(nèi),某知名連接店分店開(kāi)張營(yíng)業(yè)期間,在固定的時(shí)間段內(nèi)消費(fèi)達(dá)到一定標(biāo)準(zhǔn)的顧客可進(jìn)行一次抽獎(jiǎng)活動(dòng),隨著抽獎(jiǎng)的有效展開(kāi),參與抽獎(jiǎng)活動(dòng)的人數(shù)越來(lái)越多,該分店經(jīng)理對(duì)開(kāi)業(yè)前7天參加抽獎(jiǎng)活動(dòng)的人數(shù)進(jìn)行統(tǒng)計(jì), 表示開(kāi)業(yè)第天參加抽獎(jiǎng)活動(dòng)的人數(shù),得到統(tǒng)計(jì)表格如下:
經(jīng)過(guò)進(jìn)一步的統(tǒng)計(jì)分析,發(fā)現(xiàn)與具有線性相關(guān)關(guān)系.
(1)如從這7天中隨便機(jī)抽取兩天,求至少有1天參加抽獎(jiǎng)人數(shù)超過(guò)10天的概率;
(2)根據(jù)上表給出的數(shù)據(jù),用最小二乘法,求出與的線性回歸方程,并估計(jì)若該活動(dòng)持續(xù)10天,共有多少名顧客參加抽獎(jiǎng).
參考公式: , , , .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= ,若存在實(shí)數(shù)x1 , x2 , x3 , x4 滿足f(x1)=f(x2)=f(x3)=f(x4),且x1<x2<x3<x4 , 則 的取值范圍是( )
A.(20,32)
B.(9,21)
C.(8,24)
D.(15,25)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】袋子中放有大小和形狀相同的小球若干,其中標(biāo)號(hào)為0的小球1個(gè),標(biāo)號(hào)為1的小球1個(gè),標(biāo)號(hào)為2的小球2個(gè).從袋子中不放回地隨機(jī)抽取小球兩個(gè),每次抽取一個(gè)球,記第一次取出的小球標(biāo)號(hào)為,第二次取出的小球標(biāo)號(hào)為.
(1)記事件表示“”,求事件的概率;
(2)在區(qū)間內(nèi)任取兩個(gè)實(shí)數(shù),,求“事件恒成立”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某造船公司年造船量是20艘,已知造船x艘的產(chǎn)值函數(shù)為R(x)=3 700x+45x2-10x3(單位:萬(wàn)元),成本函數(shù)為C(x)=460x-5 000(單位:萬(wàn)元).
(1)求利潤(rùn)函數(shù)P(x);(提示:利潤(rùn)=產(chǎn)值-成本)
(2)問(wèn)年造船量安排多少艘時(shí),可使公司造船的年利潤(rùn)最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知為圓上任一點(diǎn),且點(diǎn).
(1)若在圓上,求線段的長(zhǎng)及直線的斜率.
(2)求的最大值和最小值.
(3)若,求的最大值和最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com