我們把平面直角坐標(biāo)系中,函數(shù)y=f(x),x∈D上的點(diǎn)P(x,y),滿足x∈N*,y∈N*的點(diǎn)稱為函數(shù)y=f(x)的“正格點(diǎn)”.
(1)請(qǐng)你選取一個(gè)m的值,使對(duì)函數(shù)f(x)=sinmx,x∈R的圖象上有正格點(diǎn),并寫(xiě)出函數(shù)的一個(gè)正格點(diǎn)坐標(biāo)
(2)若函數(shù)f(x)=sinmx,x∈R,m∈(1,2),與函數(shù)g(x)=lgx的圖象有正格點(diǎn)交點(diǎn),求m的值,并寫(xiě)出兩個(gè)函數(shù)圖象的所有交點(diǎn)個(gè)數(shù).
(3)對(duì)于(2)中的m值,函數(shù)f(x)=sinx,x∈[0,
59
]時(shí),不等式logax>sinmx恒成立,求實(shí)數(shù)a的取值范圍.
分析:(1)取m=
π
2
,可求相應(yīng)正格點(diǎn)坐標(biāo);
(2)作出兩個(gè)函數(shù)圖象,利用圖象可知正格點(diǎn)交點(diǎn)只有一個(gè)點(diǎn)為(10,1),從而有2kπ+
π
2
=10m,m=
4k+1
20
π,(k∈z),m∈(1,2)
,所以m=
20
,故可解;
(3)利用(2)的圖象,分a>1、0<a<1進(jìn)行討論.
解答:精英家教網(wǎng)解:(1)若取m=
π
2
時(shí),
正格點(diǎn)坐標(biāo)(1,1),(5,1)(9,1)等(答案不唯一)…(2分)
(2)作出兩個(gè)函數(shù)圖象,可知函數(shù)f(x)=sinmx,x∈R,與函數(shù)g(x)=lgx的圖象有正格點(diǎn)交點(diǎn)只有一個(gè)點(diǎn)為(10,1)(4分)
2kπ+
π
2
=10m,m=
4k+1
20
π,(k∈z),m∈(1,2)
,
m=
20
.…(6分)
根據(jù)圖象可知:兩個(gè)函數(shù)圖象的所有交點(diǎn)個(gè)數(shù)為5個(gè).(注意:最后兩個(gè)點(diǎn)非常接近,幾乎粘合在一起.)…(7分)
(3)由(2)知f(x)=sin
20
x,x∈[0,
5
9
]
,
∴①當(dāng)a>1時(shí),不等式logax>sinmx不能成立…(8分)
②當(dāng)0<a<1時(shí),由圖(2)可知loga
5
9
>sin
π
4
=
2
2
,∴(
5
9
)
2
<a<1
…(10分)
點(diǎn)評(píng):本題考查新定義,考查數(shù)形結(jié)合的思想,正確理解新定義時(shí)關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

我們把平面直角坐標(biāo)系中,函數(shù)y=f(x),x∈D上的點(diǎn)P(x,y),滿足x∈N*,y∈N*的點(diǎn)稱為函數(shù)y=f(x)的“正格點(diǎn)”.
(1)請(qǐng)你選取一個(gè)m的值,使對(duì)函數(shù)f(x)=sinmx,x∈R的圖象上有正格點(diǎn),并寫(xiě)出函數(shù)的一個(gè)正格點(diǎn)坐標(biāo)
(2)若函數(shù)f(x)=sinmx,x∈R,m∈(1,2),與函數(shù)g(x)=lgx的圖象有正格點(diǎn)交點(diǎn),求m的值,并寫(xiě)出兩個(gè)函數(shù)圖象的所有交點(diǎn)個(gè)數(shù).
(3)對(duì)于(2)中的m值,函數(shù)f(x)=sinx,x∈[0,數(shù)學(xué)公式]時(shí),不等式logax>sinmx恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

我們把平面直角坐標(biāo)系中,函數(shù)y=f(x),x∈D上的點(diǎn)P(x,y),滿足x∈N*,y∈N*的點(diǎn)稱為函數(shù)y=f(x)的“正格點(diǎn)”.
(1)請(qǐng)你選取一個(gè)m的值,使對(duì)函數(shù)f(x)=sinmx,x∈R的圖象上有正格點(diǎn),并寫(xiě)出函數(shù)的一個(gè)正格點(diǎn)坐標(biāo)
(2)若函數(shù)f(x)=sinmx,x∈R,m∈(1,2),與函數(shù)g(x)=lgx的圖象有正格點(diǎn)交點(diǎn),求m的值,并寫(xiě)出兩個(gè)函數(shù)圖象的所有交點(diǎn)個(gè)數(shù).
(3)對(duì)于(2)中的m值,函數(shù)f(x)=sinx,x∈[0,
5
9
]時(shí),不等式logax>sinmx恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(10分)我們把平面直角坐標(biāo)系中,函數(shù)上的點(diǎn),滿足的點(diǎn)稱為函數(shù)的“正格點(diǎn)”.

⑴請(qǐng)你選取一個(gè)的值,使對(duì)函數(shù)的圖像上有正格點(diǎn),并寫(xiě)出函數(shù)的一個(gè)正格點(diǎn)坐標(biāo).

⑵若函數(shù)與函數(shù)的圖像有正格點(diǎn)交點(diǎn),求m的值,并寫(xiě)出兩個(gè)函數(shù)圖像的所有交點(diǎn)個(gè)數(shù).

⑶對(duì)于⑵中的值,函數(shù)時(shí),不等式

恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年廣東省潮州市金山中學(xué)高一(下)期中數(shù)學(xué)試卷(解析版) 題型:解答題

我們把平面直角坐標(biāo)系中,函數(shù)y=f(x),x∈D上的點(diǎn)P(x,y),滿足x∈N*,y∈N*的點(diǎn)稱為函數(shù)y=f(x)的“正格點(diǎn)”.
(1)請(qǐng)你選取一個(gè)m的值,使對(duì)函數(shù)f(x)=sinmx,x∈R的圖象上有正格點(diǎn),并寫(xiě)出函數(shù)的一個(gè)正格點(diǎn)坐標(biāo)
(2)若函數(shù)f(x)=sinmx,x∈R,m∈(1,2),與函數(shù)g(x)=lgx的圖象有正格點(diǎn)交點(diǎn),求m的值,并寫(xiě)出兩個(gè)函數(shù)圖象的所有交點(diǎn)個(gè)數(shù).
(3)對(duì)于(2)中的m值,函數(shù)f(x)=sinx,x∈[0,]時(shí),不等式logax>sinmx恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案