【題目】設(shè)函數(shù)f(x)=ax﹣(k﹣1)a﹣x(a>0且a≠1)是定義域?yàn)镽的奇函數(shù).
(1)求k值;
(2)若f(1)<0,試判斷y=f(x)的單調(diào)性并求使不等式f(x2+tx)+f(4﹣x)<0恒成立的t的取值范圍;
(3)若f(1)= ,g(x)=a2x+a﹣2x﹣2f(x),求k∈N+在[1,+∞)上的最小值.
【答案】
(1)解:∵f(x)是定義域?yàn)镽的奇函數(shù),∴f(0)=0,
∴1﹣(k﹣1)=0,∴k=2
(2)解:f(x)=ax﹣a﹣x(a>0且a≠1),
若f(1)<0,則a﹣ <0,
∵a>0且a≠1,
∴a2﹣1<0,即0<a<1
∵ax單調(diào)遞減,a﹣x單調(diào)遞增,
故f(x)在R上單調(diào)遞減.
不等式化為f(x2+tx)<f(x﹣4),
∴x2+tx>x﹣4,即x2+(t﹣1)x+4>0恒成立
∴△=(t﹣1)2﹣16<0,解得﹣3<t<5
(3)解: ,
∴ ,
∴
g(x)=22x+2﹣2x﹣2(2x﹣2﹣x)=(2x﹣2﹣x)2﹣2(2x﹣2﹣x)+2
令t=2x﹣2﹣x
∵t=2x﹣2﹣x在[1,+∞)上為遞增的,
∴
∴設(shè)h(t)=t2﹣2t+2=(t﹣1)2+1,
∴ ,
即g(x)在[1,+∞)上的最小值為
【解析】(1)根據(jù)函數(shù)奇偶性的定義和性質(zhì)進(jìn)行求解即可.(2)根據(jù)不等式求出a的取值范圍,判斷函數(shù)的單調(diào)性,將不等式恒成立進(jìn)行轉(zhuǎn)化即可.(3)利用換元法,結(jié)合一元二次函數(shù)單調(diào)性的性質(zhì)進(jìn)行求解即可.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的函數(shù)F(x)的圖象,由指數(shù)函數(shù)f(x)=ax與冪函數(shù)g(x)=xb“拼接”而成.
(1)求F(x)的解析式;
(2)比較ab與ba的大;
(3)已知(m+4)﹣b<(3﹣2m)﹣b , 求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分14分)已知是函數(shù)的一個(gè)極值點(diǎn).
(Ⅰ)求;
(Ⅱ)求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)若直線與函數(shù)的圖象有3個(gè)交點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在等差數(shù)列中, , ,
(1)求數(shù)列的通項(xiàng)公式;
(2)求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+2mx+3m+4,
(1)若f(x)在(﹣∞,1]上單調(diào)遞減,求m的取值范圍;
(2)求f(x)在[0,2]上的最大值g(m).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列四個(gè)命題:
①定義在R上的函數(shù)f(x)滿足f(﹣2)=f(2),則f(x)不是奇函數(shù)
②定義在R上的函數(shù)f(x)恒滿足f(﹣x)=|f(x)|,則f(x)一定是偶函數(shù)
③一個(gè)函數(shù)的解析式為y=x2 , 它的值域?yàn)閧0,1,4},這樣的不同函數(shù)共有9個(gè)
④設(shè)函數(shù)f(x)=lnx,則對于定義域中的任意x1 , x2(x1≠x2),恒有 ,
其中為真命題的序號有(填上所有真命題的序號).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直線坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,直線的參數(shù)方程為(為參數(shù)),曲線的極坐標(biāo)方程為.
(1)直線的普通方程和曲線的參數(shù)方程;
(2)設(shè)點(diǎn)在上, 在處的切線與直線垂直,求的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)y=2sin(2x+ )的圖象向右平移 個(gè)周期后,所得圖象對應(yīng)的函數(shù)為( )
A.y=2sin(2x+ )
B.y=2sin(2x+ )
C.y=2sin(2x﹣ )
D.y=2sin(2x﹣ )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為實(shí)數(shù),函數(shù).
(1)若是函數(shù)的一個(gè)極值點(diǎn),求實(shí)數(shù)的取值;
(2)設(shè),若,使得成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com