命題“任意x∈R,都有x2≥0”的否定為
 
分析:根據(jù)全稱命題的否定是特稱命題即可得到命題的否定.
解答:解:∵全稱命題的否定是特稱命題,
∴命題“任意x∈R,都有x2≥0”的否定為:“存在x∈R,有x2<0”.
故答案為:“存在x∈R,有x2<0”.
點評:本題主要考查含有量詞的命題的否定,根據(jù)全稱命題的否定是特稱命題,特稱命題的否定是全稱命題即可得到結論.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

下列說法錯誤的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

命題“存在x∈R,使得x2+2x+5=0”的否定是
對任意x∈R,都有x2+2x+5≠0
對任意x∈R,都有x2+2x+5≠0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出以下五個命題:
①y=cos(x-
π
4
)cos(x+
π
4
)的圖象中相鄰兩個對稱中心的距離為π;
②y=
x+3
x-1
的圖象關于點(-1,1)對稱;
③關于x的方程ax2-2ax-1=0有且僅有一個實根,則a=-1
④命題P:對任意x∈R,都有sinx≤1;則¬p:存在x∈R,使得sinx>1;
⑤函數(shù)y=3x+3-x(x<0)的最小值為2.其中真命題的序號是
③④
③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=f(x)是R上的偶函數(shù),對任意x∈R,都有f(x+4)=f(x)+f(2)成立,當x1,x2∈[0,2]且x1≠x2時,都有
f(x2)-f(x1)
x2-x1
>0.給出下列命題:
①f(2)=0且T=4是函數(shù)f(x)的一個周期;
②直線x=4是函數(shù)y=f(x)的一條對稱軸;
③函數(shù)y=f(x)在[-6,-4]上是增函數(shù);
④函數(shù)y=f(x)在[-6,6]上有四個零點.
其中正確命題的序號為( 。

查看答案和解析>>

同步練習冊答案