設(shè)
(1)求的表達(dá)式,并判斷的奇偶性;
(2)試證明:函數(shù)的圖象上任意兩點的連線的斜率大于0;
(3)對于,當(dāng)時,恒有求m的取值范圍。
(1)奇函數(shù)
(2)當(dāng)時,
當(dāng)時,綜上,為增函數(shù),由增函數(shù)的定義知:,
故任意兩點的連線斜率都大于零。(3)1<m
解析試題分析:(1)令代入中,得
的定義域為R,關(guān)于原點對稱。
(2)當(dāng)時,
當(dāng)時,
綜上,為增函數(shù),由增函數(shù)的定義知:,
故任意兩點的連線斜率都大于零。
(3)由(1)知為奇函數(shù),由(2)知在為增函數(shù),故有
考點:本題考查了函數(shù)的性質(zhì)的綜合運用
點評:函數(shù)的單調(diào)性、奇偶性、周期性通常用于求解函數(shù)中的參數(shù)以及參數(shù)的范圍,利用函數(shù)的性質(zhì)往往能使問題簡化
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(1)若函數(shù)y=f(x)的圖象切x軸于點(2,0),求a、b的值;
(2)設(shè)函數(shù)y="f(x)" 的圖象上任意一點的切線斜率為k,試求的充要條件;(3)若函數(shù)y=f(x)的圖象上任意不同的兩點的連線的斜率小于1,求證。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)在處取得極小值2.
(1)求函數(shù)的解析式;
(2)求函數(shù)的極值;
(3)設(shè)函數(shù),若對于任意,總存在,使得,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
一片森林原來面積為,計劃每年砍伐一些樹,且每年砍伐面積的百分比相等,當(dāng)砍伐到面積的一半時,所用時間是10年,為保護(hù)生態(tài)環(huán)境,森林面積至少要保留原面積的,已知到今年為止,森林剩余面積為原來的.
(Ⅰ)求每年砍伐面積的百分比;
(Ⅱ)到今年為止,該森林已砍伐了多少年?
(Ⅲ)今后最多還能砍伐多少年?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
設(shè)∈R,函數(shù) =(),其中e是自然對數(shù)的底數(shù).
(1)判斷f (x)在R上的單調(diào)性;
(2)當(dāng)– 1 << 0時,求f (x)在[1,2]上的最小值.
選做題:請考生從給出的3道題中任選一題做答,并在答題卡上把所選題目的題號用2B鉛筆涂黑.注意所做題目的題號必須與所涂的題號一致,在答題卡選答區(qū)域指定位置答題.如果多做,則按所做的第一題計分.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
對于函數(shù),若存在x0∈R,使方程成立,則稱x0為的不動點,已知函數(shù)(a≠0).
(1)當(dāng)時,求函數(shù)的不動點;
(2)若對任意實數(shù)b,函數(shù)恒有兩個相異的不動點,求a的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)已知函數(shù)
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)a為何值時,方程有三個不同的實根.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com