【題目】已知函數(shù)若在區(qū)間上的最大值為,求它在該區(qū)間上的最小值.
【答案】.
【解析】試題分析:對(duì)函數(shù)求導(dǎo),判斷出單調(diào)性,求出函數(shù)的最大值, 又最大值為,可求出a值,代回求出函數(shù)的最小值.
試題解析:
f′(x)=-3x2+6x+9.令f′(x)=0,即-3x2+6x+9=0,解得x1=-1,x2=3(舍去).當(dāng)x變化時(shí),f′(x),f(x)的變化情況如下表:
x | -2 | (-2,-1) | -1 | (-1,2) | 2 |
f′(x) | - | 0 | + | ||
f(x) | 2+a | -5+a | 22+a |
由此得f(2),f(-1)分別是f(x)在區(qū)間[-2,2]上的最大值和最小值,∴f(2)=22+a=20,∴a=-2,
從而得函數(shù)f(x)在[-2,2]上的最小值為f(-1)=-5+a=-7.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“北祠堂”是我校著名的一支學(xué)生樂隊(duì),對(duì)于2015年我校“校園周末文藝廣場”活動(dòng)中“北祠堂”樂隊(duì)的表現(xiàn),在高一年級(jí)學(xué)生中投票情況的統(tǒng)計(jì)結(jié)果見表:
喜愛程度 | 非常喜歡 | 一般 | 不喜歡 |
人數(shù) | 500 | 200 | 100 |
現(xiàn)采用分層抽樣的方法從所有參與對(duì)“北祠堂”投票的800名學(xué)生中抽取一個(gè)容量為n的樣本,若從不喜歡“北祠堂”的100名學(xué)生中抽取的人數(shù)是5人.
(1)求n的值;
(2)若從不喜歡“北祠堂”的學(xué)生中抽取的5人中恰有3名男生(記為a1 , a2 , a3)2名女生(記為b1 , b2),現(xiàn)將此5人看成一個(gè)總體,從中隨機(jī)選出2人,列出所有可能的結(jié)果;
(3)在(2)的條件下,求選出的2人中至少有1名女生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若,證明:對(duì)任意的實(shí)數(shù),都有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于維向量,若對(duì)任意均有或,則稱為維向量. 對(duì)于兩個(gè)維向量定義.
(1)若, 求的值;
(2)現(xiàn)有一個(gè)維向量序列: 若且滿足: ,求證:該序列中不存在維向量.
(3) 現(xiàn)有一個(gè)維向量序列: 若且滿足: ,若存在正整數(shù)使得為維向量序列中的項(xiàng),求出所有的.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn=2n2 , {bn}為等比數(shù)列,且a1=b1 , b2(a2﹣a1)=b1 .
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)設(shè)cn= ,求數(shù)列{cn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A、B、C所對(duì)的邊分別是a、b、c滿足:cosAcosC+sinAsinC+cosB= ,且a,b,c成等比數(shù)列,
(1)求角B的大小;
(2)若 + = ,a=2,求三角形ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如下圖所示的三棱柱中,棱底面, , , , , 分別是, , 的中點(diǎn).
(Ⅰ)求證: ;
(Ⅱ)求為二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)).
(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(2)設(shè),若對(duì)任意的,存在使得成立,求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com