各項均為正數(shù)的等比數(shù)列{an}中,已知a2="8," a4="128," bn=log2a.
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{bn}的前n項和Sn
(3)求滿足不等式的正整數(shù)n的最大值
(1)(2)2013

試題分析:解:(1)∵ 等比數(shù)列{an}的各項為正,a2="8," a4="128"
設公比為q
 q="4" a1="2" ∴an=a1qn-1=2×=            (4分)
(2)∵
=        (8分)
(3) ∵(1-
==
   ∴n≤2013   ∴n的最大值為2013        (12分)
點評:主要是考查了等比數(shù)列的通項公式法運用,以及數(shù)列的求解積的運算,屬于基礎題。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

設數(shù)列是等比數(shù)列,則“”是數(shù)列是遞增數(shù)列的
A.充分而不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

等比數(shù)列項和為,,則(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

等比數(shù)列中,                              (    )
A.81B.120 C.168D.192

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

己知等比數(shù)列{}的公比為q,前n項和為Sn,且S1,S3,S2成等差數(shù)列.
(I)求公比q;
(II)若,問數(shù)列{Tn}是否存在最大項?若存在,求出該項的值;若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在等比數(shù)列中,,則數(shù)列的公比為  (     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知數(shù)列的前n項和為,且,數(shù)列滿足,數(shù)列的前n項和為(其中).
(Ⅰ)求;
(Ⅱ)若對任意的,不等式恒成立,求實數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在等比數(shù)列中,若,,則的值為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

等比數(shù)列前n項和為Sn,有人算得S1="8," S­­2="20," S3="36," S4=65,后來發(fā)現(xiàn)有一個數(shù)算錯了,錯誤的是(   )
A.S1B.S2C.S­3D.S4

查看答案和解析>>

同步練習冊答案