如圖所示,已知四棱錐P-ABCD的底面是直角梯形,∠ABC=∠BCD=90°,AB=BC=PB=PC=2,CD=1,側(cè)面PBC⊥底面ABCD,點(diǎn)F在線段AP上,且滿足數(shù)學(xué)公式
(1)證明:PA⊥BD;
(2)當(dāng)λ取何值時(shí),直線DF與平面ABCD所成角為30°?

(1)證明:如圖,∵△PBC是等邊三角形,O是BC中點(diǎn),∴PO⊥BC.
由側(cè)面PBC⊥底面ABCD,得PO⊥平面ABCD,
以BC中點(diǎn)O為原點(diǎn),以BC所在直線為x軸,過點(diǎn)O與AB平行的直線為y軸,建立如圖所示的空間直角坐標(biāo)系O-xyz.
∵AB=BC=PB=PC=2CD=2,
∴A(1,-2,0),B(1,0,0),D(-1,-1,0),P(0,0,



∴PA⊥BD;
(2)解:∵,


=
∵平面ABCD的一個(gè)法向量=(0,0,1),直線DF與平面ABCD所成角為30°
∴sin30°=||
∴4λ2-16λ+7=0
,(舍去)
∴λ=時(shí),直線DF與平面ABCD所成角為30°.
分析:(1)先證明PO⊥平面ABCD,再建立空間直角坐標(biāo)系,利用向量的數(shù)量積為0,可證得PA⊥BD;
(2)利用平面ABCD的一個(gè)法向量=(0,0,1),直線DF與平面ABCD所成角為30°,根據(jù)向量的夾角公式,即可求得結(jié)論.
點(diǎn)評(píng):本題考查線線垂直,考查線面角,考查李建勇空間向量解決立體幾何問題,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,已知四棱錐P-ABCD的底面是直角梯形,∠ABC=∠BCD=90°,AB=BC=PB=PC=2,CD=1,側(cè)面PBC⊥底面ABCD,點(diǎn)F在線段AP上,且滿足
PF
PA

(1)證明:PA⊥BD;
(2)當(dāng)λ取何值時(shí),直線DF與平面ABCD所成角為30°?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,已知四棱錐P-ABCD的底面為直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=
12
AB=1

(1)求證:面PAD⊥面PCD;
(2)求直線PC與面PAD所成角的余弦值;
(3)求AC與PB所成的角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,已知四棱錐中,底面為正方形,側(cè)面為正三角形,且平面底面,中點(diǎn),求證:

(1)平面;     (2)平面平面

 


查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆遼寧瓦房店高級(jí)中學(xué)高二上期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分12分)如圖所示,已知四棱錐S—ABCD的底面ABCD是矩形,M、N分別是CD、SC的中點(diǎn),SA⊥底面ABCD,SA=AD=1,AB=.

(1)求證:MN⊥平面ABN;(2)求二面角A—BN—C的余弦值

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:湖南省長(zhǎng)沙市2009-2010學(xué)年度高一第二次單元考試 題型:選擇題

((10分).如圖所示,已知四棱錐P—ABCD,底面ABCD為菱形,PA⊥平面ABCD,

∠ABC=60°,E,F分別是BC,PC的中點(diǎn).

(1)證明:AE⊥PD;

(2)若H為PD上的動(dòng)點(diǎn),EH與平面PAD所成最大角的正切值為,

求二面角E—AF—C的余弦值.

 

 

 

 

 

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案