【題目】某校舉行漢字聽寫比賽,為了了解本次比賽成績情況,從得分不低于50分的試卷中隨機(jī)抽取100名學(xué)生的成績(得分均為整數(shù),滿分100分)進(jìn)行統(tǒng)計(jì),請根據(jù)頻率分布表中所提供的數(shù)據(jù),解答下列問題:
組號 | 分組 | 頻數(shù) | 頻率 |
第1組 | [50,60) | 5 | 0.05 |
第2組 | [60,70) | 0.35 | |
第3組 | [70,80) | 30 | |
第4組 | [80,90) | 20 | 0.20 |
第5組 | [90,100] | 10 | 0.10 |
合計(jì) | 100 | 1.00 |
(Ⅰ)求的值;
(Ⅱ)若從成績較好的第3、4、5組中按分層抽樣的方法抽取6人參加市漢字聽寫比賽,并從中選出2人做種子選手,求2人中至少有1人是第4組的概率。
【答案】(1) 35,0.30;(2) .
【解析】試題分析:(Ⅰ)直接利用頻率和等于1求出b,用樣本容量乘以頻率求a的值;
(Ⅱ)由分層抽樣方法求出所抽取的6人中第三、第四、第五組的學(xué)生數(shù),利用列舉法寫出從中任意抽取2人的所有方法種數(shù),查出2人至少1人來自第四組的事件個(gè)數(shù),然后利用古典概型的概率計(jì)算公式求解.
試題解析:
(Ⅰ)a=100-5-30-20-10=35,b=1-0.05-0.35-0.20-0.10=0.30
(Ⅱ )因?yàn)榈?/span>3、4、5組共有60名學(xué)生,所以利用分層抽樣在60名學(xué)生中抽取6名學(xué)生,
每組分別為,第3組: ×30=3人,第4組: ×20=2人,第5組: ×10=1人,
所以第3、4、5組應(yīng)分別抽取3人、2人、1人
設(shè)第3組的3位同學(xué)為A1、A2、A3,第4組的2位同學(xué)為B1、B2,第5組的1位同學(xué)為C1,則從6位同學(xué)中抽2位同學(xué)有15種可能,如下:
(A1,A2),(A1,A3),(A1,B1),(A1,B2),(A1,C1),(A2,A3),(A2,B1),(A2,B2),(A2,C1),(A3,B1),(A3,B2),(A3,C1),(B1,B2),(B1,C1),(B2,C1).其中第4組被入選的有9種,
所以其中第4組的2位同學(xué)至少有1位同學(xué)入選的概率為=
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是定義在上的奇函數(shù).
(1)求的解析式;
(2)證明:函數(shù)在定義域上是增函數(shù);
(3)設(shè)是否存在正實(shí)數(shù)使得函數(shù)在內(nèi)的最小值為?若存在,求出的值;若存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的非負(fù)半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為.
(1)求出圓的直角坐標(biāo)方程;
(2)已知圓與軸相交于, 兩點(diǎn),直線: 關(guān)于點(diǎn)對稱的直線為.若直線上存在點(diǎn)使得,求實(shí)數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù), (a>0且a≠1)是定義域?yàn)镽的奇函數(shù).
(Ⅰ) 求的值
(Ⅱ)若,試求不等式的解集;
(Ⅲ)若,且,求在上的最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)= ,g(x)=a(x+b)(0<a≤1,b≤0).
(1)討論函數(shù)y=f(x)g(x)的奇偶性;
(2)當(dāng)b=0時(shí),判斷函數(shù)y= 在(﹣1,1)上的單調(diào)性,并說明理由;
(3)設(shè)h(x)=|af2(x)﹣ |,若h(x)的最大值為2,求a+b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(為自然對數(shù)的底數(shù)).
(1)若, ,求函數(shù)的單調(diào)區(qū)間;
(2)若,且方程在內(nèi)有解,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題正確的是__________.(寫出所有正確命題的序號)
①已知,“且”是“”的充要條件;
②已知平面向量,“且”是“”的必要不充分條件;
③已知,“”是“”的充分不必要條件;
④命題:“,使且”的否定為:“,都有且”
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com