【題目】已知函數(shù).
(1)若是實(shí)數(shù)集上的奇函數(shù),求的值;
(2)用定義證明在實(shí)數(shù)集上的單調(diào)遞增;
(3)若的值域?yàn)?/span>,且[,求的取值范圍.
【答案】(1);(2)證明見解析;(3).
【解析】
(1)利用奇函數(shù)的定義,建立方程,即可求實(shí)數(shù)m的值;
(2)利用函數(shù)的單調(diào)性定義證明即可;
(3)由可得,即,解之即可.
(1)∵f(x)是R上的奇函數(shù),
∴f(x)+f(﹣x)=m﹣+m﹣=0,
即2m﹣( +)=02m﹣1=0,
解得m=.
(2)設(shè) x1<x2且x1,x2∈R,
則f(x1)﹣f(x2)=m﹣﹣(m﹣)=,
∵x1<x2∴,
,∴f(x1)﹣f(x2)<0,即f(x1)<f(x2),
∴f(x)在R上單調(diào)遞增.
(3)由,所以m﹣1<f(x)<m,f(x)值域?yàn)镈,
且,∴D=(m﹣1,m),
∵
∴,∴m的取值范圍是.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2cos2ωx+ sin2ωx(ω>0)的最小正周期為π,給出下列四個命題:
①f(x)的最大值為3;
②將f(x)的圖象向左平移 后所得的函數(shù)是偶函數(shù);
③f(x)在區(qū)間[﹣ , ]上單調(diào)遞增;
④f(x)的圖象關(guān)于直線x= 對稱.
其中正確說法的序號是( )
A.②③
B.①④
C.①②④
D.①③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=ax2-1-lnx,其中a∈R.
(1)若a=0,求過點(diǎn)(0,-1)且與曲線y=f(x)相切的直線方程;
(2)若函數(shù)f(x)有兩個零點(diǎn)x1,x2,
① 求a的取值范圍;
② 求證:f ′(x1)+f ′(x2)<0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l:y=﹣x+1與橢圓C: =1(a>b>0))相交于不同的兩點(diǎn)A、B,且線段AB的中點(diǎn)P的坐標(biāo)為( , )
(1)求橢圓C離心率;
(2)設(shè)O為坐標(biāo)原點(diǎn),且2|OP|=|AB|,求橢圓C的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某研究型學(xué)習(xí)小組調(diào)查研究學(xué)生使用智能手機(jī)對學(xué)習(xí)的影響,部分統(tǒng)計數(shù)據(jù)如右表,則下列說法正確的是( )
使用智能手機(jī) | 不使用智能手機(jī) | 總計 | |
學(xué)習(xí)成績優(yōu)秀 | 4 | 8 | 12 |
學(xué)習(xí)成績不優(yōu)秀 | 16 | 2 | 18 |
總計 | 20 | 10 | 30 |
參考公式: ,其中.
參考數(shù)據(jù):
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
A. 有99.9%的把握認(rèn)為使用智能手機(jī)對學(xué)習(xí)有影響.
B. 有99.9%的把握認(rèn)為使用智能手機(jī)對學(xué)習(xí)無影響.
C. 在犯錯誤的概率不超過0.005的前提下認(rèn)為使用智能手機(jī)對學(xué)習(xí)有影響.
D. 在犯錯誤的概率不超過0.005的前提下認(rèn)為使用智能手機(jī)對學(xué)習(xí)無影響.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】通過隨機(jī)詢問110名性別不同的大學(xué)生是否愛好某項(xiàng)運(yùn)動,得到如下的列聯(lián)表:
男 | 女 | 總計 | |
愛好 | 40 | 20 | 60 |
不愛好 | 20 | 30 | 50 |
總計 | 60 | 50 | 110 |
由 算得, .
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
參照附表,得到的正確結(jié)論是( )
A.在犯錯誤的概率不超過0.1%的前提下,認(rèn)為“愛好該項(xiàng)運(yùn)動與性別有關(guān)”
B.在犯錯誤的概率不超過0.1%的前提下,認(rèn)為“愛好該項(xiàng)運(yùn)動與性別無關(guān)”
C.有99%以上的把握認(rèn)為“愛好該項(xiàng)運(yùn)動與性別有關(guān)”
D.有99%以上的把握認(rèn)為“愛好該項(xiàng)運(yùn)動與性別無關(guān)”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲乙兩地相距,貨車從甲地勻速行駛到乙地,速度不得超過,已知貨車每小時的運(yùn)輸成本(單位:圓)由可變本和固定組成組成,可變成本是速度平方的倍,固定成本為元.
(1)將全程勻速勻速成本(元)表示為速度的函數(shù),并指出這個函數(shù)的定義域;
(2)若,為了使全程運(yùn)輸成本最小,貨車應(yīng)以多大的速度行駛?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列有關(guān)命題的說法中錯誤的是
A. 在頻率分布直方圖中,中位數(shù)左邊和右邊的直方圖的面積相等 .
B. 一個樣本的方差是,則這組數(shù)據(jù)的總和等于60.
C. 在殘差圖中,殘差點(diǎn)分布的帶狀區(qū)域的寬度越狹窄,其模型擬合的精度越差.
D. 對于命題使得<0,則,使.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知公差不為0的等差數(shù)列{an}的前n項(xiàng)和為Sn , 且S3=9,a1 , a3 , a7成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)數(shù)列{bn}滿足bn=(an﹣1)2n , 求數(shù)列{bn}的前n項(xiàng)和Tn .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com