對(duì),不等式組所表示的平面區(qū)域?yàn)?sub>,把內(nèi)的整點(diǎn)(橫坐標(biāo)與縱坐標(biāo)均為整數(shù)的點(diǎn))按其到原點(diǎn)的距離從近到遠(yuǎn)排成點(diǎn)列:,,,…,。

(1)求;

(2)若為非零常數(shù)),問(wèn)是否存在整數(shù),使得對(duì)任意。

解:(1),

,故內(nèi)的整點(diǎn)都落在直線上且,故內(nèi)的整點(diǎn)按其到原點(diǎn)的距離從近到遠(yuǎn)排成的點(diǎn)列為(1,1),(1,2),(1,3),…,(1,n),

。

(2),

,

  (*)

當(dāng)時(shí),(*)式即為,對(duì)都成立,

。

當(dāng)時(shí),(*)式即為,對(duì)都成立,

,又。

∴存在,使得對(duì)任意,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)n∈N*,不等式組
x>0
y>0
y≤-nx+2n
所表示的平面區(qū)域?yàn)镈n,Dn內(nèi)的整點(diǎn)(橫坐標(biāo)與縱坐標(biāo)均為整數(shù)的點(diǎn))按其到原點(diǎn)的距離從近到遠(yuǎn)排成點(diǎn)列.(x1,y1)(x2,y2),(x3,y3),…,(xn,yn
(1)求xn,yn;
(2)數(shù)列{an}滿足a1=x1,且n≥2時(shí)an=
y
2
n
(
1
y
2
1
+
1
y
2
2
+…+
1
y
2
n-1
)
.證明當(dāng)n≥2時(shí),
an+1
(n+1)
-
an
n2
=
1
n2
;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年江蘇省無(wú)錫一中高一(下)期中數(shù)學(xué)試卷(解析版) 題型:解答題

不等式組所表示的平面區(qū)域?yàn)镈n,若Dn內(nèi)的整點(diǎn)(整點(diǎn)即橫坐標(biāo)和縱坐標(biāo)均為整數(shù)的點(diǎn))個(gè)數(shù)為an(n∈N*
(1)寫出an+1與an的關(guān)系(只需給出結(jié)果,不需要過(guò)程),
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)設(shè)數(shù)列an的前n項(xiàng)和為Sn,若對(duì)一切的正整數(shù)n,總有Tn≤m成立,求m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009年廣東省重點(diǎn)中學(xué)高考數(shù)學(xué)模擬試卷(理科)(解析版) 題型:解答題

對(duì)n∈N*,不等式組所表示的平面區(qū)域?yàn)镈n,Dn內(nèi)的整點(diǎn)(橫坐標(biāo)與縱坐標(biāo)均為整數(shù)的點(diǎn))按其到原點(diǎn)的距離從近到遠(yuǎn)排成點(diǎn)列.(x1,y1)(x2,y2),(x3,y3),…,(xn,yn
(1)求xn,yn
(2)數(shù)列{an}滿足a1=x1,且n≥2時(shí).證明當(dāng)n≥2時(shí),

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年四川省成都11中高考數(shù)學(xué)沖刺試卷(文理合卷)(解析版) 題型:解答題

設(shè)不等式組所表示的平面區(qū)域?yàn)镈n,記Dn內(nèi)的整點(diǎn)個(gè)數(shù)為an(n∈N*)(整點(diǎn)即橫坐標(biāo)與縱坐標(biāo)均為整數(shù)的點(diǎn)).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)(理)設(shè),求Sn的最小值(n>1,n∈N*);
(3)設(shè)求證:
(文)記數(shù)列{an}的前n項(xiàng)和為Sn,且.若對(duì)一切的正整數(shù)n,總有Tn≤m,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案